近年来,青藏高原湖泊的快速扩张引起广泛关注,已有不少研究系统分析了大于1 km2的大型湖泊的变化动态,但对于面积较小的由于多年冻土退化形成的热融湖塘,其在大范围流域尺度上的分布及变化研究尚不多见。论文基于光学和雷达影像,系统分析了三江源区内湖塘(<1 km2)分布及其变化,以及与多年冻土之间的联系,并且首次揭示了湖塘底部融区的分布情况。结果表明:(1)三江源区2020年代(2020—2022年)的湖塘面积达917.03 km2,湖塘总数为61608个。其中长江源区湖塘数量最多,达到48987个,黄河源区12459个,澜沧江源区最少。(2)相较于1960年代,2020年代三江源区域面积小于1 km2湖塘数量增加了76%,面积增加了13%。长江源区湖塘扩张明显,黄河源区、澜沧江源区的部分湖塘萎缩。1960年代的湖塘有53%在2020年代依然存在。(3)三江源区80.9%的湖塘底部冬季存在融区,其中长江源有78.2%,黄河源有90.8%,澜沧江源有98.7%。在多年冻土区,有一半底部有融区的湖塘在1...
青海三江源区是全球气候变化的敏感区和生态环境脆弱区,目前正面临着冻土退化的问题。本研究基于三江源区18个国家气象站1961—2021年气象观测资料,对气候变暖前后季节冻土冻融特征进行对比分析。结果表明:三江源区年平均气温为-0.34℃,呈东高西低分布,总体以0.38℃·(10a)-1的速率上升,并在1997年发生突变,突变后气温显著升高。平均年最大季节冻结深度为142.5 cm,自西北向东南减小,总体以2.4 cm·(10a)-1速率退化,与变暖前相比减少了11 cm。平均地表冻结初日为10月24日,以1.0 d·(10a)-1速率推迟,平均地表冻结终日为5月18日,以3.3 d·(10a)-1速率提前,与变暖前相比,地表冻结终日提前了12 d,地表冻结初日推迟了14 d。季节冻土平均冻结时间为133.9 d,呈西高东低分布,总体以1.9 d·(10a)-1速率减少,与变暖前相比减少了8.8 d。年最大冻结深度及冻结时间分别在2004年和2002年发生突变,相比气温均有一定滞后...
作为长江、黄河、澜沧江的发源地,三江源区是我国重要的水源涵养区和生态屏障。在气候变化背景下,三江源区广泛分布的冻土显著退化,对植被变化与生态环境产生深远影响,但近20年植被变化特征及其对气候与冻土变化的响应尚不明晰。基于2001—2020年间三江源区植被、气象与土壤冻融数据集,分析了过去20年间三江源区植被物候变化特征及其对气候因子与土壤冻融要素变化的响应。结果表明:三江源区归一化植被指数(NDVI)整体呈东南高、西北低的空间格局,2001—2020年间三江源区植被整体呈变绿趋势,生长季NDVI以每10年0.017的速率显著增加;植被物候显著变化,生长季延长[6.3 d·(10a)-1],主要由生长季开始日期(SOS)提前[4.9 d·(10a)-1]贡献。基于统计分析结果,气温和降水是生长季NDVI最重要的主导因素,植被对降水的敏感性在气温相对较高、降水相对较少的暖干区域更强;生长季开始前的降水是SOS最重要的主导因素。土壤冻融变化对植被生长的影响具有空间异质性,在暖干区域,土壤融化时段延长对植被生长起到抑制作用。总体来看,三江源季节冻土区...
为揭示青海三江源区水文活动规律,描述季节性冻土分布区内冻、融变化过程中土壤内部热量交换和水分迁移等物理过程,采用有限体积法离散热传导方程和非饱和土壤水运动方程并对其进行耦合求解,建立了冻土区土壤水热耦合模型。利用2005~2007年间9个测站的土壤水热观测资料,从不同角度分析了冻土活动层内的土壤水热特征,对土壤融化深度、表层土壤温度及表层土壤含水量等变化过程的模拟验证结果表明,该模型的模拟结果符合当地的水热运动规律。并定量分析检验了模型方法的有效性,揭示了三江源区的土壤水热运动规律,为该地区的生态系统服务提供了有力的支持。