我国冻土面积占全国总面积的75%,在东北、青藏高原等地区较为多见。冻土自身具有冻胀、融沉及开裂等特点,如果无法实现对冻土的高效处理,路基稳定性将会大打折扣。从季节性冻土特点及危害入手,结合具体研究对象深入分析季节性冻土地区路基水温分布及变化,最后提出防范季节性冻土地区路基冻害相关建议及措施,希望为我国道路工程施工提供更多支持。
利用第五次耦合模式比较计划(CMIP5)多个模式的模拟结果,对比再分析资料和青藏高原(下称高原)冻土图,评估了模式对当前(1986-2005年)高原冻土的模拟能力。在此基础上应用多模式集合平均结果,预估了未来不同典型浓度路径(RCPs)情景下高原地表层多年冻土的可能变化。结果表明:CMIP5耦合模式对高原冻土有一定的模拟能力,采用SFI地面冻结指数模型计算的当前地表层多年冻土分布与高原冻土图有较好的吻合,1986-2005年高原地表层平均多年冻土面积为127.5×10~4km2;多模式集合预估结果显示,高原地表层多年冻土呈现区域性退化趋势,高原东部、南部及北部边缘地区冻土带退化较为明显,有从外围向西北部多年冻土区逐步退化的趋势,RCP2.6、RCP4.5、RCP6.0和RCP8.5情景下未来50年地表层多年冻土面积分别减少约23.9×10~4km2(20.8%)、33.5×10~4km2(27.7%)、25.6×10~4km2(21.1%)和43.5×10~4km2(35.3%...
天然气水合物是一种绝缘固体,与围岩电阻率差异大,具有电磁法勘探的物性基础。在青海木里天然气水合物赋存区,开展了瞬变电磁法的勘探试验研究,发现电阻率断面图上部为连续较厚高阻层,下部低阻背景之间存在不连续高阻层。根据木里天然气水合物钻井的测井资料,上部连续高阻层可以确定为冻土层,而下部不连续高阻层位于非冻土层之间,深度上与科学钻井的天然气水合物赋存层位基本对应,处于天然气水合物稳定带,因此认为瞬变电磁法探测的下部非冻土层内不连续高阻层指示了木里天然气水合物的赋存层。研究结果表明:瞬变电磁法具有探测常年冻土带深部高阻的能力,可用于天然气水合物的勘探。
冻土分布区储存着大量有机碳,其碳库大小超过全球土壤碳库的1/2。同时,冻土区气温在以超过全球平均值2倍的速率持续上升。显著的气候变暖可能使得冻土中储存的大量碳被微生物分解释放,进而导致碳循环与气候变暖之间的正反馈。在此背景下,冻土碳循环成为近年来全球变化研究中广泛关注的焦点问题。研究人员发现,冻土层土壤碳释放速率与活动层相当甚至更快。冻土区土壤碳分解温
多年冻土是在东北小兴安岭地区中较为多发的一种地质情况,在小兴安岭中的分布较为广泛,并且所具有的沉融性会对工程建设带来较大的危害。为避免多年冻土区域对于工程建设的影响,需要在总结分析多年冻土工程地质特性的基础上,做好相关多年冻土区域的地质勘察,以便在工程建设设计及施工过程中避开多年冻土区域。本文将在总结分析多年冻土区域地质特点的基础上对如何做好小兴安岭地区的地质勘察进行分析阐述。
多年冻土对土的物理、力学、水文地质、工程地质等性质有很大影响,在这一地区修筑公路,一定要采取特殊措施进行处理,运营过程中的养护管理也同样重要。基于此,文章对内蒙古地区季节性冻土区公路养护管理措施进行了分析,以便更好地延长公路的使用寿命。
Biomass burning is a large source of light-absorbing refractory black carbon (rBC) particles with a wide range of morphologies and sizes. The net radiative forcing from these particles is strongly dependent on the amount and composition of non-light-absorbing material internally mixed with the rBC and on the morphology of the mixed particles. Understanding how the mixing state and morphology of biomass-burning aerosol evolves in the atmosphere is critical for constraining the influence of these particles on radiative forcing and climate. We investigated the response of two commercial laser-based particle mass spectrometers, the vacuum ultraviolet (VUV) ablation LAAPTOF and the IR vaporization SP-AMS, to monodisperse biomass-burning particles as we sequentially coated the particles with secondary organic aerosol (SOA) from alpha-pinene ozonolysis. We studied three mobility-selected soot core sizes, each with a number of successively thicker coatings of SOA applied. Using IR laser vaporization, the SP-AMS had different changes in sensitivity to rBC compared to potassium as a function of applied SOA coatings. We show that this is due to different effective beam widths for the IR laser vaporization region of potassium versus black carbon. The SP-AMS's sensitivity to black carbon (BC) mass was not observed to plateau following successive SOA coatings, despite achieving high OA : BC mass ratios greater than 9. We also measured the ion fragmentation pattern of biomass-burning rBC and found it changed only slightly with increasing SOA mass. The average organic matter ion signal measured by the LAAPTOF demonstrated a positive correlation with the condensed SOA mass on individual particles, despite the inhomogeneity of the particle core compositions. This demonstrates that the LAAPTOF can obtain quantitative mass measurements of aged soot-particle composition from realistic biomass-burning particles with complex morphologies and composition.
为了解路基填筑对路基下多年冻土热状况的影响程度,在国道214沿线典型地段设置了监测断面,在天然场地路基中心、左右路肩及左右坡脚等处布设了测温孔。采用现场监测和数值模拟相结合的方法,分析了国道214沿线路基下伏多年冻土热状况长期变化情况。研究结果表明:多年冻土区修筑普通路基以后,多年冻土地温逐渐升高,路基下多年冻土发生快速融化;开始融化的时间提前,完成回冻的时间有所延后;针对K369+210断面,左路肩、路基中心以及右路肩下8m处升温速率分别为0.040,0.050,0.047℃·年-1,人为上限下降速率分别为16.82,25.36,16.73cm·年-1;在考虑全球气温升高的情况下,多年冻土温度持续升高,路基下多年冻土处于持续退化状况;年平均地温越高,人为上限下降的幅度越大;在路基运营30年内,多年冻土上限仍处于下降状态,这将严重威胁多年冻土路基的安全运行;需要及时采取措施主动冷却路基来保护冻土,避免产生更大的融沉变形,从而保障路基正常运营。
本实用新型公开一种密封于融冰釜中冰芯包裹气体提取装置,其结构特征是融冰釜上置有真空计和温度计,釜外有集热罩,底部有燃气炉,进口真空阀和出口真空阀分居样品瓶的两端,融冰釜分别通过管路,一路由管路上的出口真空阀和样品瓶连通,一路由管路上1#真空阀与管路上1#干泵连接,再由1#干泵通过管路与进口真空阀连接,再通过管路上的2#真空阀与管路与上2#干泵连接;样品瓶上安装正负压力表。本装置直接在野外提取不同融冰量的气体,减少了大量冰芯远距离运输造成的人力、物力的消耗;也可直接将收集好的气瓶用于冰芯包裹气在温室气体方面的研究,尤其为冰芯气体放射性氪同位素定年中应用和研究提供保证。本实用新型保证了样品取气的完整,省时省力,方便快捷,携带方便,具有良好的使用和推广价值。
2016-12-21Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 +/- 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 +/- 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q(10) /of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73% lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be strongly affected by long-term experimental warming, and these results provide insight into their future dynamics and feedback potential with future climate change.