在列表中检索

共检索到 226
SCIENCE OF THE TOTAL ENVIRONMENT

Thermokarst landslide (TL) activity in the Qinghai-Tibet Plateau (QTP) is intensifying due to climate warminginduced permafrost degradation. However, the mechanisms driving landslide formation and evolution remain poorly understood. This study investigates the spatial distribution, annual frequency, and monthly dynamics of TLs along the Qinghai-Tibet engineering corridor (QTEC), in conjunction with in-situ temperature and rainfall observations, to elucidate the interplay between warming, permafrost degradation, and landslide activity. Through the analysis of high-resolution satellite imagery and field surveys, we identified 1298 landslides along the QTEC between 2016 and 2022, with an additional 386 landslides recorded in a typical landslide-prone subarea. In 2016, 621 new active-layer detachments (ALDs) were identified, 1.3 times the total historical record. This surge aligned with unprecedented mean annual and August temperatures. The ALDs emerged primarily between late August and early September, coinciding with maximum thaw depth. From 2016 to 2022, 97.8 % of these ALDs evolved into retrogressive thaw slumps (RTSs), identified as active landslides. Landslides typically occur in alpine meadows at moderate altitudes and on gentle northward slopes. The thick ice layer near the permafrost table serves as the material basis for ALD occurrence. Abnormally high temperature significantly increased the active layer thickness (ALT), resulting in melting of the ice layer and formation of a thawed interlayer, which was the direct causing factor for ALD. By altering the local material, micro-topography, and thermal conditions, ALD activity significantly increases RTS susceptibility. Understanding the mechanisms of ALD formation and evolution into RTS provides a theoretical foundation for infrastructure development and disaster mitigation in extreme environments.

期刊论文 2024-12-01 DOI: 10.1016/j.scitotenv.2024.176557 ISSN: 0048-9697

Arctic fjords are hotspots of marine carbon burial, with diatoms playing an essential role in the biological carbon pump. Under the background of global warming, the proportion of diatoms in total phytoplankton communities has been declining in many high-latitude fjords due to increased turbidity and oligotrophication resulting from glacier melting. However, due to the habitat heterogeneity among Svalbard fjords, diatom responses to glacier melting are also expected to be complex, which will further lead to changes in the biological carbon pumping and carbon sequestration. To address the complexity, three short sediment cores were collected from three contrasting fjords in Svalbard (Krossfjorden, Kongsfjorden, Gronfjorden), recording the history of fjord changes in recent decades during significant glacier melting. The amino acid molecular indicators in cores K4 and KF1 suggested similar organic matter degradation states between these two sites. In contrast to the turbid Kongsfjorden and Gronfjorden, preserved fucoxanthin in Krossfjorden indicated a continuous increase in diatoms since the mid-1980s, corresponding to a 59 % increase in biological carbon pumping, as quantified by the delta C-13 of sedimentary organic carbon. The increasing biological carbon pumping in Krossfjorden is further attributed to its hard rock types in the glacier basin, compared to Kongsfjorden and Gronfjorden, which are instead covered by soft rocks, as confirmed by a one-dimensional model. Given the distribution of rock types among basins in Svalbard, we extrapolate our findings and propose that approximately one-fifth of Svalbard's fjords, especially those with hard rock basins and persistent marine-terminated glaciers, still have the potential for an increase in diatom fractions and efficient biological carbon pumping. Our findings reveal the complexity of fjord phytoplankton responses and biological carbon pumping to increasing glacier melting, and underscore the necessity of modifying Arctic marine carbon feedback to climate change based on results from fjords underlain by hard rocks.

期刊论文 2024-11-15 DOI: 10.1016/j.scitotenv.2024.175757 ISSN: 0048-9697

Lakes are known as sentinels of climate change, but their responses may differ from one to another leading to different strategies in lake protection. It is particularly the case in the Tibetan Plateau (TP) of multiple hydrological processes. We employed the Budyko framework to study Tibetan lakes from two lake-basins of contrasting climates for the period between 1980 and 2022: Taro Co Basin (TCB) in a sub-arid climate, and Ranwu Lake Basin (RLB) in a sub-humid climate. Our results showed that total lake area, surface air temperature, evapotranspiration, and potential evapotranspiration increased in both lake-basins, while precipitation and soil moisture increased in the TCB but decreased in the RLB. In the Budyko space, two basins had contrast hydroclimatic trajectories in terms of aridity and evaporative index. The TCB shifted from wetting to drying trend, while the RLB from drying to wetting in early 2000s. Notably, lake change was generally consistent with the drying/wetting phases in the TCB, but in contrast with that in the RLB, which can be attributed to warming- induced glacier melting. Despite of significant correlation with the large-scale atmospheric oscillations, it turned to be more plausible if lake area changes were substituted with basin's hydroclimatic trajectories. Among the large-scale oscillations, El Nino-Southern o-Southern Oscillation (ENSO) is the most dominant control of lake trends and their drying/wetting shifts. Our findings offer a valuable insight into lake responses to climate change in the TP and other regions.

期刊论文 2024-11-15 DOI: 10.1016/j.scitotenv.2024.175465 ISSN: 0048-9697

Soil freeze-thaw cycles (FTCs) are common in temperate agricultural ecosystems during the non-growing season and are progressively influenced by climate change. The impact of these cycles on soil microbial communities, crucial for ecosystem functioning, varies under different agricultural management practices. Here, we investigated the dynamic changes in soil microbial communities in a Mollisol during seasonal FTCs and examined the effects of stover mulching and nitrogen fertilization. We revealed distinct responses between bacterial and fungal communities. The dominant bacterial phyla reacted differently to FTCs: for example, Proteobacteria responded opportunistically, Actinobacteria, Acidobacteria, Choroflexi and Gemmatimonadetes responded sensitively, and Saccharibacteria exhibited a tolerance response. In contrast, the fungal community composition remained relatively stable during FTCs, except for a decline in Glomeromycota. Certain bacterial OTUs acted as sensitive indicators of FTCs, forming keystone modules in the network that are closely linked to soil carbon, nitrogen content and potential functions. Additionally, neither stover mulching nor nitrogen fertilization significantly influenced microbial richness, diversity and potential functions. However, over time, more indicator species specific to these agricultural practices began to emerge within the networks and gradually occupied the central positions. Furthermore, our findings suggest that farming practices, by introducing keystone microbes and changing interspecies interactions (even without changing microbial richness and diversity), can enhance microbial community stability against FTC disturbances. Specifically, higher nitrogen input with stover removal promotes fungal stability during soil freezing, while lower nitrogen levels increase bacterial stability during soil thawing. Considering the fungal tolerance to FTCs, we recommend reducing nitrogen input for manipulating bacterial interactions, thereby enhancing overall microbial resilience to seasonal FTCs. In summary, our research reveals that microbial responses to seasonal FTCs are reshaped through land management to support ecosystem functions under environmental stress amid climate change.

期刊论文 2024-11-10 DOI: 10.1016/j.scitotenv.2024.175228 ISSN: 0048-9697

Rapid surface and subsurface changes in the Arctic polygonal tundra landscapes due to the melting of ice wedges, known as thermokarst processes, have significant implications for Arctic ecosystems. However, the integration of thermokarst processes into widely used global climate models for projections poses an important question. Here we use an integrated permafrost thermal hydrology model to explore the decoupled nature of two thermokarst processes - microtopography evolution and ground subsidence - in six Arctic locations. Our study specifically investigates this decoupled nature during the transformation of poorly drained low-centered polygons to welldrained high-centered polygons. Spanning diverse climates in polygonal tundra landscapes under the RCP8.5 climate scenario, our findings reveal small variations in permafrost thaw and ground subsidence rates - 2-10 % and 2-4 %, respectively - with and without the representation of microtopography evolution. This suggests that neglecting surface microtopography and its evolution is unlikely to have significant impacts on permafrost projections, regardless of the climate and location. As a result, we suggest the representation of microtopography in Earth System Models may not be imperative. Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration.

期刊论文 2024-10-20 DOI: 10.1016/j.scitotenv.2024.174741 ISSN: 0048-9697

Glacial changes are crucial to regional water resources and ecosystems in the Sawir Mountains. However, glacial changes, including the mass balance and glacial meltwater of the Sawir Mountains, have sparsely been reported. Three model calibration strategies were constructed including a regression model based on albedo and in-situ mass balance of Muz Taw Glacier (A-Ms), regression model based on albedo and geodetic mass balance of valley, cirque, and hanging glaciers (A-Mr), and degree-day model (DDM) to obtain a reliable glacier mass balance in the Sawir Mountains and provide the latest understanding in the contribution of glacial meltwater runoff to regional water resources. The results indicated that the glacial albedo reduction was significant from 2000 to 2020 for the entire Sawir Mountains, with a rate of 0.015 (10a)- 1, and the spatial pattern was higher in the east compared to the west. Second, the three strategies all indicated that the glacier mass balance has been continuously negative during the past 20 periods, and the average annual glacier mass balance was -1.01 m w.e. Third, the average annual glacial meltwater runoff in the Sawir Mountains from 2000 to 2020 was 22 x 106 m3, and its

期刊论文 2024-09-20 DOI: 10.1016/j.scitotenv.2024.173703 ISSN: 0048-9697

Together with warming air temperatures, Arctic ecosystems are expected to experience increases in heavy rainfall events. Recent studies report accelerated degradation of permafrost under heavy rainfall, which could put significant amounts of soil carbon and infrastructure at risk. However, controlled experimental evidence of rainfall effects on permafrost thaw is scarce. We experimentally tested the impact and legacy effect of heavy rainfall events in early and late summer for five sites varying in topography and soil type on the High Arctic archipelago of Svalbard. We found that effects of heavy rainfall on soil thermal regimes are small and limited to one season. Thaw rates increased under heavy rainfall in a loess terrace site, but not in polygonal tundra soils with higher organic matter content and water tables. End-of-season active layer thickness was not affected. Rainfall application did not affect soil temperature trends, which appeared driven by timing of snowmelt and organic layer thickness, particularly during early summer. Late summer rainfall was associated with slower freeze-up and colder soil temperatures the following winter. This implies that rainfall impacts on Svalbard permafrost are limited, locally variable and of short duration. Our findings diverge from earlier reports of sustained increases in permafrost thaw following extreme rainfall, but are consistent with observations that maritime permafrost regions such as Svalbard show lower rainfall sensitivity than continental regions. Based on our experiment, no substantial in-situ effects of heavy rainfall are anticipated for thawing of permafrost on Svalbard under future warming. However, further work is needed to quantify permafrost response to local redistribution of active layer flow under natural rainfall extremes. In addition, replication of experiments across variable Arctic regions as well as long-term monitoring of active layers, soil moisture and local climate will be essential to develop a panarctic perspective on rainfall sensitivity of permafrost. permafrost are limited, locally variable and of short duration. Our findings diverge from earlier reports tained increases in permafrost thaw following extreme rainfall, but are consistent with observations time permafrost regions such as Svalbard show lower rainfall sensitivity than continental regions. Based experiment, no substantial in-situ effects of heavy rainfall are anticipated for thawing of permafrost on under future warming. However, further work is needed to quantify permafrost response to local redistribution active layer flow under natural rainfall extremes. In addition, replication of experiments across variable regions as well as long-term monitoring of active layers, soil moisture and local climate will be essential develop a panarctic perspective on rainfall sensitivity of permafrost.

期刊论文 2024-09-15 DOI: 10.1016/j.scitotenv.2024.173696 ISSN: 0048-9697

Vehicle -emitted fine particulate matter (PM 2.5 ) has been associated with significant health outcomes and environmental risks. This study estimates the contribution of traffic -related exhaust emissions (TREE) to observed PM 2.5 using a novel factorization framework. Specifically, co -measured nitrogen oxides (NO x ) concentrations served as a marker of vehicle -tailpipe emissions and were integrated into the optimization of a Non -negative Matrix Factorization (NMF) analysis to guide the factor extraction. The novel TREE-NMF approach was applied to long-term (2012 - 2019) PM 2.5 observations from air quality monitoring (AQM) stations in two urban areas. The extracted TREE factor was evaluated against co -measured black carbon (BC) and PM 2.5 species to which the TREE-NMF optimization was blind. The contribution of the TREE factor to the observed PM 2.5 concentrations at an AQM station from the first location showed close agreement ( R 2 = 0 .79) with monitored BC data. In the second location, a comparison of the extracted TREE factor with measurements at a nearby Surface PARTiculate mAtter Network (SPARTAN) station revealed moderate correlations with PM 2.5 species commonly associated with fuel combustion, and a good linear regression fit with measured equivalent BC concentrations. The estimated concentrations of the TREE factor at the second location accounted for 7 - 11 % of the observed PM 2.5 in the AQM stations. Moreover, analysis of specific days known to be characterized by little traffic emissions suggested that approximately 60 - 78 % of the traffic -related PM 2.5 concentrations could be attributed to particulate traffic -exhaust emissions. The methodology applied in this study holds great potential in areas with limited monitoring of PM 2.5 speciation, in particular BC, and its results could be valuable for both future environmental health research, regional radiative forcing estimates, and promulgation of tailored regulations for traffic -related air pollution abatement.

期刊论文 2024-08-25 DOI: 10.1016/j.scitotenv.2024.173715 ISSN: 0048-9697

To better understand the changes in the hydrologic cycle caused by global warming in Antarctica, it is crucial to improve our understanding of the groundwater flow system, which has received less attention despite its significance. Both hydraulic and thermal properties of the active layer, through which groundwater can flow during thawing seasons, are essential to quantify the groundwater flow system. However, there has been insufficient information on the Antarctic active layer. The goal of this study was to estimate the hydraulic and thermal properties of Antarctic soils through laboratory column experiments and inverse modeling. The column experiments were conducted with sediments collected from two lakes in the Barton Peninsula, Antarctica. A sand column was also operated for comparison. Inverse modeling using HydroGeoSphere (HGS) combined with Parameter ESTimation (PEST) was performed with data collected from the column experiments, including permeameter tests, saturation -drain tests, and freeze -thaw tests. Hydraulic parameters (i.e., K s , theta s , S wr , alpha , beta, and S s ) and thermal diffusivity ( D ) of the soils were derived from water retention curves and temperature curves with depth, respectively. The hydraulic properties of the Antarctic soil samples, estimated through inverse modeling, were 1.6 x 10 - 5 -3.4 x 10 -4 cm s -1 for K s , 0.37 -0.42 for theta s , 6.62 x 10 - 3 -1.05 x 10 -2 for S wr , 0.53 -0.58 cm - 1 for alpha, 5.75 -7.96 for beta, and 5.11 x 10 - 5 -9.02 x 10 -5 cm - 1 for S s . The thermal diffusivities for the soils were estimated to be 0.65-4.64 cm 2 min -1 . The soil hydraulic and thermal properties reflected the physical and ecological characteristics of their lake environments. The results of this study can provide a basis for groundwater -surface water interaction in polar regions, which is governed by variably -saturated flow and freezethaw processes.

期刊论文 2024-08-10 DOI: 10.1016/j.scitotenv.2024.173474 ISSN: 0048-9697

The Qinghai-Tibet Plateau glaciers are an important carrier of mercury (Hg). With global warming, Hg enters into the downstream ecosystem in the melt waters, threatening human health and ecosystem security in the region. Methylmercury (MeHg), which has higher toxicity than Hg itself, is converted from inorganic Hg. However, little is known about the process of Hg methylation and, in particular, microbial Hg methylation in high altitude mountain glaciers. We combined Hg speciation measurements and metagenomic analysis of 6 sample types from the terminus of Laohugou No.12 glacier to elucidate potential microbially mediated Hg methylation. We found higher Hg concentrations in supraglacial cryoconite (SC) and dusty layer (DL) samples which contain considerable debris and dust. In addition, MeHg concentrations were highest in some of these SC and DL samples. Bacterial hgcA Hg methylation genes were present in all samples except supraglacial ice but were of highest abundance in SC and DL. This suggested that microbial Hg methylation is most likely to occur in SC and DL. There were 8 phyla of potential Hg methylation microorganisms, but 37% of the sequences could not be classified into any known genus. Most of the hgcA sequences were closely related to sequences from previously reported Hg methylating genera within the Deltaproteobacteria and Firmicutes, but the common Hg methylating Methanomicrobia were absent in glacial samples. (C) 2019 Elsevier B.V. All rights reserved.

期刊论文 2024-08-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2019.135226 ISSN: 0048-9697
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共226条,23页