Surface soil moisture (SSM) is a key limiting factor for vegetation growth in alpine meadow on the Qinghai-Tibetan Plateau (QTP). Patches with various sizes and types may cause the redistribution of SSM by changing soil hydrological processes, and then trigger or accelerate alpine grassland degradation. Therefore, it is vital to understand the effects of patchiness on SSM at multi-scales to provide a reference for alpine grassland restoration. However, there is a lack of direct observational evidence concerning the role of the size and type of patches on SSM, and little is known about the effects of patches pattern on SSM at plot scale. Here, we first measured SSM of typical patches with different sizes and types at patch scale and investigated their patterns and SSM spatial distribution through unmanned aerial vehicle (UAV)-mounted multi-type cameras at plot scale. We then analyzed the role of the size and type of patchiness on SSM at both patch and plot scales. Results showed that: (1) in situ measured SSM of typical patches was significantly different (P < 0.01), original vegetation patch (OV) had the highest SSM, followed by isolate vegetation patch (IV), small bare patch (SP), medium bare patch (MP) and large bare patch (LP); (2) the proposed method based on UAV images was able to estimate SSM (0-40 cm) with a satisfactory accuracy (R-2 = 0.89, P < 0.001); (3) all landscape indices of OV, with the exception of patch density, were positively correlated with SSM at plot scale, while most of the landscape indices of LP and IV showed negative correlations (P < 0.05). Our results indicated that patchiness intensified the spatial heterogeneity of SSM and potentially accelerated the alpine meadow degradation. Preventing the development of OV into IV and the expansion of LP is a critical task for alpine meadow management and restoration.
Permafrost degradation on the Tibetan Plateau (TP) has triggered widespread retrogressive thaw slumps (RTSs), affecting hydrology, carbon sequestration and infrastructure stability. To date, there is still a lack of long-term monitoring of RTSs across the TP, the thaw dynamics and comprehensive driving factors remain unclear. Here, using time-series Landsat imagery and change detection algorithm, we identified RTSs on permafrost regions of the TP from 1986 to 2020. Existing RTSs inventories and high-resolution historical imagery were employed to verify the identified results, the temporal validation of RTSs disturbance pixels demonstrated a high accuracy. In the study area, a total of 3537 RTSs were identified, covering a total area of 5997 ha, representing a 26-fold increase since 1986, and 69.2 % of RTSs formed since 2010. Most RTSs are located on gentle slope (4-12 degrees) at elevations between 4500 m and 5300 m, with a tendency to form in alpine grassland and alpine meadow. Annual variations in RTSs area exhibited a significant positive correlation with minimum air temperature, mean land surface temperature, and annual thawing index, while it showing a significant negative correlation with the decrease in downward shortwave radiation. Spatially, RTSs were more common in areas with higher soil water content and shallower active layer. Landsat imagery captured the vast majority of RTSs on the TP and revealed interannual disturbance details, but the 30 m resolution remains inadequate for delineating the refined boundaries of some micro-scale (< 0.18 ha) RTSs. Detected RTSs disturbances on the TP will aid in hazard management and carbon feedback assessments, and our findings provide novel insights into the impacts of climate change and permafrost environments on RTSs formation.
Influenced by a warm and humid climate, the permafrost on the Qinghai-Tibet Plateau is undergoing significant degradation, leading to the occurrence of extensive thermokarst landforms. Among the most typical landforms in permafrost areas is thaw slump. This study, based on three periods of data from keyhole images of 1968-1970, the fractional images of 2006-2009 and the Gaofen (GF) images of 2018-2019, combined with field surveys for validation, investigates the distribution characteristics and spatiotemporal variation trends of thaw slumps in the Hoh Xil area and evaluates the susceptibility to thaw slumping in this area. The results from 1968 to 2019 indicate a threefold increase in the number and a twofold increase in total area of thaw slumps. Approximately 70% of the thaw slumps had areas less than 2 x 104 m2. When divided into a grid of 3 km x 3 km, about 1.3% (128 grids) of the Hoh Xil region experienced thaw slumping from 1968 to 1970, while 4.4% (420 grids) showed such occurrences from 2018 to 2019. According to the simulation results obtained using the informativeness method, the area classified as very highly susceptible to thaw slumping covers approximately 26% of the Hoh Xil area, while the highly susceptible area covers about 36%. In the Hoh Xil, 61% of the thaw slump areas had an annual warming rate ranging from 0.18 to 0.25 degrees C/10a, with 70% of the thaw slump areas experiencing a precipitation increase rate exceeding 12 mm/10a. Future assessments of thaw slump development suggest a possible minimum of 41 and a maximum of 405 thaw slumps occurrences annually in the Hoh Xil region. Under rapidly changing climatic conditions, apart from environmental risks, there also exist substantial potential risks associated with thaw slumping, such as the triggering of large-scale landslides and debris flows. Therefore, it is imperative to conduct simulated assessments of thaw slumping throughout the entire plateau to address regional risks in the future.
Accurately understanding flood evolution and its attribution is crucial for watershed water resource management as well as disaster prevention and mitigation. The source region of the Yellow River (SRYR) has experienced several severe floods over the past few decades, but the driving factor influencing flood volume variation in the SRYR remains unclear. In this study, the Budyko framework was used to quantify the effects of climate change, vegetation growth, and permafrost degradation on flood volume variation in six basins of the SRYR. The results showed that the flood volume decreased before 2000 and increased after 2000, but the average value after 2000 remained lower than that before 2000. Flood volume is most sensitive to changes in precipitation, followed by changes in landscape in all basins. The decrease in flood volume was primarily influenced by changes in active layer thickness in permafrost-dominated basins, while it was mainly controlled by other landscape changes in non-permafrost-dominated basins. Meanwhile, the contributions of changes in potential evapotranspiration and water storage changes to the reduced flood volume were negative in all basins. Furthermore, the impact of vegetation growth on flood volume variation cannot be neglected due to its regulating role in the hydrological cycle. These findings can provide new insights into the evolution mechanism of floods in cryospheric basins and contribute to the development of strategies for flood control, disaster mitigation, and water resource management under a changing climate.
Arctic permafrost soils contain a vast reservoir of soil organic carbon (SOC) vulnerable to increasing mobilization and decomposition from polar warming and permafrost thaw. How these SOC stocks are responding to global warming is uncertain, partly due to a lack of information on the distribution and status of SOC over vast Arctic landscapes. Soil moisture and organic matter vary substantially over the short vertical distance of the permafrost active layer. The hydrological properties of this seasonally thawed soil layer provide insights for understanding the dielectric behavior of water inside the soil matrix, which is key for developing more effective physics-based radar remote sensing retrieval algorithms for large-scale mapping of SOC. This study provides a coupled hydrologic-electromagnetic framework to model the frequency-dependent dielectric behavior of active layer organic soil. For the first time, we present joint measurement and modeling of the water matric potential, dielectric permittivity, and basic physical properties of 66 soil samples collected across the Alaskan Arctic tundra. The matric potential measurement allows for estimating the soil water retention curve, which helps determine the relaxation time through the Eyring equation. The estimated relaxation time of water molecules in soil is then used in the Debye model to predict the water dielectric behavior in soil. A multi-phase dielectric mixing model is applied to incorporate the contribution of various soil components. The resulting organic soil dielectric model accepts saturation water fraction, organic matter content, mineral texture, temperature, and microwave frequency as inputs to calculate the effective soil dielectric characteristic. The developed dielectric model was validated against lab-measured dielectric data for all soil samples and exhibited robust accuracy. We further validated the dielectric model against field-measured dielectric profiles acquired from five sites on the Alaskan North Slope. Model behavior was also compared against other existing dielectric models, and an indepth discussion on their validity and limitations in permafrost soils is given. The resulting organic soil dielectric model was then integrated with a multi-layer electromagnetic scattering forward model to simulate radar backscatter under a range of soil profile conditions and model parameters. The results indicate that low frequency (P-,L-band) polarimetric synthetic aperture radars (SARs) have the potential to map water and carbon characteristics in permafrost active layer soils using physics-based radar retrieval algorithms.
We present a multi-year study of Saharan dust intrusions on a mountainous site located in the central Mediterranean Basin regarding their aerosol optical and geometrical properties. The observations were carried out at the Consiglio Nazionale delle Ricerche-Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA) located in Potenza (40,360N, 15,440E), Italy, from March 2010 to October 2022, using ACTRIS (Aerosol Clouds and Trace Gases Research InfraStructure). A total of 101 night-time lidar measurements of dust intrusions were identified. The following properties were calculated for the periods December, January, February (DJF), March, April, May (MAM), June, July, August (JJA) and September, October, November (SON): aerosol layer center of mass altitude, particle lidar ratio at 355 and 532 nm, particle depolarization ratio at 532 nm and backscattering & Aring;ngstr & ouml;m exponent at 532-1064 nm. Both geometrical and optical aerosol properties vary considerably with the seasons. During SON and DJF, air masses transporting dust travel at lower altitudes, and become contaminated with local continental particles. In MAM and JJA, dust is also likely to travel at higher altitudes and rarely mix with other aerosol types. As a result, aerosols are larger in size and irregular in shape during the warm months. The ratio of the lidar ratios at 355 and 532 nm is 1.11 +/- 0.15 in DJF, 1.12 +/- 0.07 in SON, 0.94 +/- 0.12 in MAM, and 0.92 +/- 0.08 in JJA. The seasonal radiative effect estimated using the Fu-Liou-Gu (FLG) radiative transfer model indicates the most significant impact during the JJA period. A negative dust radiative effect is observed both at the surface (SRF) and at the top of the atmosphere (TOA) in all the seasons, and this could be related to a minimal contribution from black carbon. Specifically, the SRF radiative effect estimation is -14.48 +/- 1.32 W/m2 in DJF, -18.00 +/- 0.89 W/m2 in MAM, -22.08 +/- 1.36 W/m2 in JJA, and -13.47 +/- 1.12 W/m2 in SON. Instead, radiative effect estimation at the TOA is -22.23 +/- 2.06 W/m2 in DJF, -38.23 +/- 2.16 W/m2 in MAM, -51.36 +/- 3.53 W/m2 in JJA, and -22.57 +/- 2.11 W/m2 in SON. The results highlight how the radiative effects of the particles depend on the complex relationship between the dust load, their altitude in the troposphere, and their optical properties. Accordingly, the knowledge of aerosols optical property profiles is of primary importance to understand the radiative impact of dust.
The freeze-thaw cycle of near-surface soils significantly affects energy and water exchanges between the atmosphere and land surface. Passive microwave remote sensing is commonly used to observe the freeze-thaw state. However, existing algorithms face challenges in accurately monitoring near-surface soil freeze/thaw in alpine zones. This article proposes a framework for enhancing freeze/thaw detection capability in alpine zones, focusing on band combination selection and parameterization. The proposed framework was tested in the three river source region (TRSR) of the Qinghai-Tibetan Plateau. Results indicate that the framework effectively monitors the freeze/thaw state, identifying horizontal polarization brightness temperature at 18.7 GHz (TB18.7H) and 23.8 GHz (TB23.8H) as the optimal band combinations for freeze/thaw discrimination in the TRSR. The framework enhances the accuracy of the freeze/thaw discrimination for both 0 and 5-cm soil depths. In particular, the monitoring accuracy for 0-cm soil shows a more significant improvement, with an overall discrimination accuracy of 90.02%, and discrimination accuracies of 93.52% for frozen soil and 84.68% for thawed soil, respectively. Furthermore, the framework outperformed traditional methods in monitoring the freeze-thaw cycle, reducing root mean square errors for the number of freezing days, initial freezing date, and thawing date by 16.75, 6.35, and 12.56 days, respectively. The estimated frozen days correlate well with both the permafrost distribution map and the annual mean ground temperature distribution map. This study offers a practical solution for monitoring the freeze/thaw cycle in alpine zones, providing crucial technical support for studies on regional climate change and land surface processes.
In permafrost regions, vegetation growth is influenced by both climate conditions and the effects of permafrost degradation. Climate factors affect multiple aspects of the environment, while permafrost degradation has a significant impact on soil moisture and nutrient availability, both of which are crucial for ecosystem health and vegetation growth. However, the quantitative analysis of climate and permafrost remains largely unknown, hindering our ability to predict future vegetation changes in permafrost regions. Here, we used statistical methods to analyze the NDVI change in the permafrost region from 1982 to 2022. We employed correlation analysis, multiple regression residual analysis and partial least squares structural equation modeling (PLS-SEM) methods to examine the impacts of different environmental factors on NDVI changes. The results show that the average NDVI in the study area from 1982 to 2022 is 0.39, with NDVI values in 80% of the area remaining stable or exhibiting an increasing trend. NDVI had the highest correlation with air temperature, averaging 0.32, with active layer thickness coming in second at 0.25. Climate change plays a dominant role in NDVI variations, with a relative contribution rate of 89.6%. The changes in NDVI are positively influenced by air temperature, with correlation coefficients of 0.92. Although the active layer thickness accounted for only 7% of the NDVI changes, its influence demonstrated an increasing trend from 1982 to 2022. Overall, our results suggest that temperature is the primary factor influencing NDVI variations in this region.
Accurately determining the freeze/thaw state (FT) is crucial for understanding land-atmosphere interactions, with significant implications for climate change, ecological systems, agriculture, and water resource management. This article introduces a novel approach to assess FT dynamics by comparing the new diurnal amplitude variations (DAV) algorithm with the traditional seasonal threshold algorithm (STA) based on the soil moisture active passive (SMAP) brightness temperature data. Utilizing soil temperature profiles from 44 sites recorded by the National Ecological Observatory Network between July 2019 and June 2022. The results reveal that the DAV algorithm demonstrates a remarkable potential for capturing FT signals, achieving an average accuracy of 0.82 (0.89 for the SMAP-FT product) across all sites and a median accuracy of 0.94 (0.92 for the SMAP-FT product) referring to soil temperature at 0.02 m. Notably, the DAV algorithm outperforms the SMAP-adopted STA in 25 out of 44 sites. The accuracy of the DAV algorithm is affected by daily temperature fluctuations and geographical latitudes, while the STA exhibits limitations in certain regions, particularly those with complex terrains or variable climatic patterns. This article's innovative contribution lies in systematically comparing the performance of the DAV and STA algorithms, providing valuable insights into their respective strengths and weaknesses.
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).