共检索到 115
PERMAFROST AND PERIGLACIAL PROCESSES

Permafrost microbial research has flourished in the past decades, due in part to improvements in sampling and molecular techniques, but also the increased focus on the permafrost greenhouse gas feedback to climate change and other ecological processes in high latitude and alpine permafrost soils. Permafrost microorganisms are adapted to these extreme environments and remain active at low temperatures and when resources are limited. They are also an important component of global elemental cycles as they regulate organic matter turnover and greenhouse gas production, particularly as permafrost thaws. Here we review the permafrost microbiology literature coupled with an exploration of its historical aspects, with a particular focus on a new understanding advanced by molecular biology techniques. We further identify knowledge gaps and ways forward to improve our understanding of microbial contributions to ecosystem biogeochemistry of permafrost-affected systems.

期刊论文 2025-06-01 DOI: 10.1002/ppp.2264 ISSN: 1045-6740

Permafrost is undergoing rapid changes due to climate warming, potentially exposing a vast reservoir of carbon to be released to the atmosphere, causing a positive feedback cycle. Despite the importance of this feedback, its specifics remain poorly constrained, because representing permafrost dynamics still poses a significant challenge for Earth System Models (ESMs). This review assesses the current state of permafrost representation in land surface models (LSMs) used in ESMs and offline permafrost models, highlighting both the progress made and the remaining gaps.We identify several key physical processes crucial for permafrost dynamics, including soil thermal regimes, freeze-thaw cycles, and soil hydrology, which are underrepresented in many models. While some LSMs have advanced significantly in incorporating these processes, others lack fundamental elements such as latent heat of freeze-thaw, deep soil columns, and Arctic vegetation dynamics. Offline permafrost models provide valuable insights, offering detailed process testing and aiding the prioritization of improvements in coupled LSMs.Our analysis reveals that while significant progress has been made in incorporating permafrost-related processes into coupled LSMs, many small-scale processes crucial for permafrost dynamics remain underrepresented. This is particularly important for capturing the complex interactions between physical and biogeochemical processes required to model permafrost carbon dynamics. We recommend leveraging advancements from offline permafrost models and progressively integrating them into LSMs, while recognizing the computational and technical challenges that may arise in coupled simulations. We highlight the importance of enhancing the representation of physical processes, including through improvements in model resolution and complexity, as this is a fundamental precursor to accurately incorporate biogeochemical processes and capture the permafrost carbon feedback.

期刊论文 2025-06-01 DOI: 10.1002/ppp.2269 ISSN: 1045-6740

Ambient seismic noise and microseismicity analyses are increasingly applied for the monitoring of landslides and natural hazards. These methodologies can offer a valuable monitoring tool also for glacial and periglacial bodies, to understand the internal processes driven by external modifications in air temperature and rainfall/snowfall regimes and to forecast possible melting-related hazards in the light of climate change adaptation. We applied the methods to an almost continuous year of data recorded by a network of four passive seismic stations deployed in the frontal portion of the Gran Sometta rock glacier (Aosta Valley, NW Italian Alps). The spectral analysis of ambient seismic noise revealed frequency peaks related to stratigraphic resonances inside the rock glacier. Although the resonance frequency related to the bedrock interface was constant over time, a second higher resonance frequency was identified as the effect of variations in the active layer thickness driven by external air temperature modifications at the daily and seasonal scales. Ambient seismic noise cross-correlation highlighted coherent shear wave velocity modifications inside the periglacial body. The microseismicity dataset extracted from the continuous ambient noise recordings was analyzed and clustered to further investigate the ongoing internal processes and gain insight into their source mechanism and location. The first cluster of events was found to be likely related to the basal movements of the rock glacier and to falls and slides of the debris material. The second cluster was possibly related to shallow ice and rock fracturing processes. The validation of the seismic results through simple models of the rock glacier physical and mechanical layering, the internal thermal regime and the surface displacements allowed for a comprehensive understanding of the rock glacier's reaction to the external conditions.

期刊论文 2025-05-19 DOI: 10.1002/ppp.2286 ISSN: 1045-6740

This paper investigates the spatiotemporal dynamics and their changes of the southern limit of latitudinal permafrost (SLLP) and the lower limit of mountain permafrost (LLMP) in Northeast China, emphasizing the roles of climate change and human activities. Permafrost in this region is primarily distributed in the northern parts of the Da and Xiao Xing'anling mountain ranges and in the upper parts of the Changbai Mountains and at the summits of the Huanggangliang Mountains in the southern part of the Da Xing'anling Mountain Range. Permafrost degradation, ongoing since at least the local Holocene Megathermal Period (8.5-6.0 ka BP), has intermittently reversed during cooler climatic intervals but continues to exert significant impacts on regional environments, infrastructure stability, and carbon storage. Notably, the northward retreats of the SLLP since the mid-19th century underscore the sustained nature of this degradation, especially in southern patchy permafrost zones increasingly sensitive to warming and anthropogenic influences. LLMP variability is similarly shaped by a combination of climatic, hydrometeorological, ecological, and topographic factors. The distributions of SLLP and LLMP are further complicated by the presence of relict and sporadic permafrost, as well as the hydrothermal effects of vegetation and snow cover. Addressing the challenges of mapping and modeling boreal permafrost in Northeast China requires comprehensive field investigations, long-term in situ monitoring via station networks, and advanced numerical modeling. Emerging technologies, including satellite and airborne remote sensing (RS), geographic information systems (GIS), unmanned aerial vehicles (UAVs), surface geophysical methods, and big data analytics, offer new possibilities for enhancing permafrost monitoring and mapping. Integrating these tools with conventional field studies can significantly improve our understanding of permafrost dynamics. Continued efforts in monitoring, technological innovation, multidisciplinary collaboration, and international cooperation are essential to meet the challenges posed by permafrost degradation in a changing climate.

期刊论文 2025-05-14 DOI: 10.1002/ppp.2285 ISSN: 1045-6740

Periglacial processes and permafrost-related landforms, such as rock glaciers, are particularly vulnerable to climate change because of their reliance on sustained low temperatures to maintain permafrost integrity. Rising temperatures lead to permafrost thawing, increased active layer thickness, and ground instability, which disrupt the structural and ecological stability of these environments. Rock glaciers, which are ubiquitous in high mountain systems, are especially sensitive to these changes and serve as key geo-indicators of current or past alpine permafrost conditions, reflecting the multifaceted impacts of warming on both ecological and abiotic components. In this review, we synthesize current scientific knowledge on the complex and divergent responses of alpine rock glaciers to climate change, highlighting a wide range of methodologies employed to study the complex interactions between climatic drivers and rock glacier dynamics. We first explore ecological impacts, focusing on how climatic changes influence vegetation patterns, species composition, and overall biodiversity associated with rock glaciers. Subsequently, we examine the dynamic behavior of rock glaciers, including their structural integrity, movement patterns, and hydrological roles within high mountain ecosystems. By integrating findings from various disciplines, this review underscores the importance of multidisciplinary approaches and long-term monitoring to advance our understanding of rock glacier ecosystem dynamics and their role in periglacial processes under climate change. Our synthesis identifies critical knowledge gaps, such as the uncertain drivers of divergent rock glacier responses and the limited integration of ecological and abiotic data in existing studies. We highlight research priorities, including the establishment of regional monitoring networks and the development of predictive models that incorporate vegetation and permafrost interactions. These insights provide actionable guidance for adaptive management strategies to mitigate the ecological and geological impacts of climate change on these unique and sensitive environments.

期刊论文 2025-04-21 DOI: 10.1002/ppp.2278 ISSN: 1045-6740

Subarctic palsa mires are natural indicators of the status of permafrost in its sporadic distribution zone. Estimation of the rate of their thawing can become an auxiliary indicator to predict climate shifts. The formation, growth, and degradation of palsas are dynamic processes that depend on seasonal weather fluctuations and local environmental factors. Therefore, accurate forecasts of palsas conditions and related ecosystem shifts must be based on a broad set of attributes of palsas from different regions of the Northern Hemisphere. With this in mind, we studied two palsa mires sites on the Kola Peninsula, for which no thorough descriptions were previously available. The first site, Chavanga, is at the southern limit of the permafrost zone under unfavorable climatic conditions and is a collapsing relic. The second site, Ponoy, in contrast, is within the sporadic permafrost zone with relatively cold and dry conditions. Our dataset was created by combining several methods to produce detailed spatial models of permafrost for the studied palsa mires. We used 3D ground-penetrating radar (GPR) survey, UAV-based orthophoto maps, peat thermometry, time-domain reflectometry, and manual sampling. We developed two integrated geospatial models that describe the active layer, the configuration of the palsa frozen core, and its thermal state and identify the zones of the most intense thawing. These observations revealed a significant thermal effect of the groundwater flow and its critical role in the palsas segmentation and rapid collapse. We have investigated a regulating effect of micromorphological features of palsa mounds such as heights, slope, depressions, and mire mineral bed through groundwater drainage. As a result, two new scenarios for the palsa degradation process have been developed, emphasizing the influence of environmental factors on the permafrost condition.

期刊论文 2025-04-06 DOI: 10.1002/ppp.2276 ISSN: 1045-6740

We present an innovative approach to understanding permafrost degradation processes through the application of new environment-based particle image velocimetry (E-PIV) to time-lapse imagery and correlation with synchronous temperature and rainfall measurements. Our new approach to extracting quantitative vector movement from dynamic environmental conditions that can change both the position and the color balance of each image has optimized the trade-off between noise reduction and preserving the authenticity of movement data. Despite the dynamic polar environments and continuous landscape movements, the E-PIV provides the first quantitative real-time associations between environmental drivers and the responses of permafrost degradation mechanism. We analyze four event-based datasets from an island southwest of Tuktoyaktuk, named locally as Imnaqpaaluk or Peninsula Point near Tuktoyaktuk, NWT, Canada, spanning a 5-year period from 2017 to 2022. The 2017 dataset focuses on the interaction during a hot dry summer between slope movement and temperature changes, laying the foundation for subsequent analyses. In 2018, two datasets significantly expand our understanding of typical failure mechanisms in permafrost slopes: one investigates the relationship between slope movement and rainfall, while the other captures an overhang collapse, providing a rare quantitative observation of an acute landscape change event. The 2022 dataset revisits the combination of potential rain and air temperature-related forcing to explore the environment-slope response relationship around an ice wedge, a common feature of ice-rich permafrost coasts. These analyses reveal both a direct but muted association with air temperatures and a detectable delayed slope response to the occurrence of rainfall, potentially reflective of the time taken for the warm rainwater to infiltrate through the active layer and affect the frozen ground. Whilst these findings also indicate that other factors are likely to influence permafrost degradation processes, the associations have significant implications given the projections for a warmer, wetter Arctic. The ability to directly measure permafrost slope responses offers exciting new potential to quantitatively assess the sensitivity of different processes of degradation for the first time, improving the vulnerability components of hazard risk assessments, guiding mitigation efforts, and better constraining future projections of erosion rates and the mobilization of carbon-rich material.

期刊论文 2025-01-23 DOI: 10.1002/ppp.2268 ISSN: 1045-6740

As a key component of the cryosphere, permafrost is sensitive to climate change, but mapping permafrost, especially in the Tibetan Plateau, has been challenging due to the heterogeneous mountainous landscape and limited representativeness of ground observations. Using 155 compiled ground observations and more than 20,000 rock glacier records, we developed a machine learning model to map the distribution of permafrost and produce an improved permafrost zonation index (PZI) map. The model was applied by incorporating several control variables, including terrain (elevation and relief), soil (bulk density, clay, coarse fragments, sand, and silt), and temperature (MAAT, FDD, and TDDT) to estimate the PZI at a 1-km resolution in the southern Tibetan Plateau. Excluding glaciers and lakes, the area of permafrost estimated by the new map is approximately 103.5 x 103 km2, accounting for 47.8% of the total area of the region. The result was assessed with various datasets and compared with existing permafrost maps and achieved higher accuracy compared with previous studies. The overall classification accuracy was 96.1% in high plain areas and 84.4% in mountain areas. The results demonstrated the substantial potential for improving mapping permafrost and understanding the periglacial environment with rock glacier inventories and machine learning, especially in complex terrain and climate.

期刊论文 2025-01-12 DOI: 10.1002/ppp.2266 ISSN: 1045-6740

Ongoing and amplified climate change in the Arctic is leading to glacier retreat and to the exposure of an ever-larger portion of non-glaciated permafrost-dominated landscapes. Warming will also cause more precipitation to fall as rain, further enhancing the thaw of previously frozen ground. Yet, the impact of those perturbations on the geochemistry of Arctic rivers remains a subject of debate. Here, we determined the geochemical composition of waters from various contrasting non-glacial permafrost catchments and investigated their impact on a glacially dominated river, the Zackenberg River (Northeast Greenland), during late summer (August 2019). We also studied the effect of rainfall on the geochemistry of the Zackenberg River, its non-glacial tributaries, and a nearby independent non-glacial headwater stream Gr ae nse. We analyzed water properties, quantified and characterized dissolved organic matter (DOM) using absorbance and fluorescence spectroscopy and radiocarbon isotopes, and set this alongside analyses of the major cations (Ca, Mg, Na, and K), dissolved silicon (Si), and germanium/silicon ratios (Ge/Si). The glacier-fed Zackenberg River contained low concentrations of major cations, dissolved Si and dissolved organic carbon (DOC), and a Ge/Si ratio typical of bulk rock. Glacial DOM was enriched in protein-like fluorescent DOM and displayed relatively depleted radiocarbon values (i.e., old DOM). Non-glacial streams (i.e., tributaries and Gr ae nse) had higher concentrations of major cations and DOC and DOM enriched in aromatic compounds. They showed a wide range of values for radiocarbon, Si and Ge/Si ratios associated with variable contributions of surface runoff relative to deep active layer leaching. Before the rain event, Zackenberg tributaries did not contribute notably to the solute export of the Zackenberg River, and supra-permafrost ground waters governed the supply of solutes in Zackenberg tributaries and Gr ae nse stream. After the rain event, surface runoff modified the composition of Gr ae nse stream, and non-glacial tributaries strongly increased their contribution to the Zackenberg River solute export. Our results show that summer rainfall events provide an additional source of DOM and Si-rich waters from permafrost-underlain catchments to the discharge of glacially dominated rivers. This suggests that the magnitude and composition of solute exports from Arctic rivers are modulated by permafrost thaw and summer rain events. This event-driven solute supply will likely impact the carbon cycle in rivers, estuaries, and oceans and should be included into future predictions of carbon balance in these vulnerable Arctic systems.

期刊论文 2025-01-01 DOI: 10.1002/ppp.2250 ISSN: 1045-6740

Palsas and peat plateaus occur in various environmental conditions, but their driving environmental factors have not been examined across the Northern Hemisphere with harmonized datasets. Such comparisons can deepen our understanding of these landforms and their response to climate change. We conducted a comparative study between four regions: Hudson Bay, Iceland, Northern Fennoscandia, and Western Siberia by integrating landform observations and geospatial data into a MaxEnt model. Climate and hydrological conditions were identified as primary, yet regionally divergent, factors affecting palsa and peat plateau occurrence. Suitable conditions for these landforms entail specific temperature ranges (500-1500 thawing degree days, 500-4000 freezing degree days), around 300 mm of rainfall, and high soil moisture accumulation potential. Iceland's conditions, in particular, differ due to higher precipitation, a narrower temperature range, and the significance of soil organic carbon content. The annual thermal balance is a critical factor in understanding the occurrence of permafrost peatlands and should be considered when comparing different regions. We conclude that palsas and peat plateaus share similar topographic conditions but occupy varying soil conditions and climatic niches across the Northern Hemisphere. These findings have implications for understanding the climatic sensitivity of permafrost peatlands and identifying potential greenhouse gas emitters.

期刊论文 2025-01-01 DOI: 10.1002/ppp.2253 ISSN: 1045-6740
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共115条,12页