高温冻土本构模型是准确计算冻土体应力与变形的关键。基于修正剑桥模型及双屈服面理论,考虑高温冻土黏聚力及内摩擦角的影响,以整体变形εv-lnp曲线描述试样变形特征,采用应力路径相关因子修正当前屈服面及参考屈服面硬化参量,建立了一个高温冻土双屈服面统一本构模型。结合弹塑性理论推导获得了应力应变关系的增量形式,给出了模型参数的含义与简便确定方法,定义了反映高温冻土当前状态的固结参数及潜在强度,剖析了其与硬化参量之间的相互依赖、相互制约动态循环关系,分析了整个应力路径中的模型状态演化过程,利用试验数据对构建的本构模型进行了验证,结果表明提出的本构模型能够很好地预测高温冻土在常规三轴应力路径下的应力应变行为。
开展荷载作用下冻土的宏-细观力学特性试验研究,对揭示冻土细观力学特性和建立宏-细观力学性质之间的联系具有重要的意义。利用重新研制的可配合医用CT进行扫描的冻土三轴仪开展了不同温度、围压条件下的饱和冻土常规三轴压缩试验研究,其中在轴向加载过程中共对试样进行了8次CT扫描。通过对CT数平均值和应力应变曲线的分析发现:当应力应变曲线表现为应变硬化时,冻土试样CT数平均值随着轴向应变的增加而线性降低;当应力应变曲线表现为应变软化时,试样CT数平均值在软化阶段加速降低。结合动态扫描过程中试样CT数平均值的变化规律,提出利用试样CT数平均值对体积破损率进行表征,建立了饱和冻土的二元介质细观本构模型,并利用试验数据对建立的本构模型进行了验证,结果表明提出的本构模型能够很好的预测冻土在常规三轴应力路径下的应力应变行为。
冻土的动态拉伸强度和破坏特性在涉及冻土工程高效破碎和安全稳定性分析领域具有重要的参考价值。为研究负温和加载率对冻土动态拉伸性能的影响,利用铝质分离式Hopkinson压杆试验系统开展了冻土的动态巴西圆盘劈裂试验,结合高速摄像系统,分析了温度和加载率对冻土动态拉伸强度、能量耗散和破坏模式的影响,探讨了冻土巴西圆盘的劈裂破坏机理及动态拉伸强度的影响因素。结果表明:冲击荷载作用下,冻结黏土和冻结砂土巴西圆盘试样均遵循中心起裂的破坏模式,试件破坏为沿轴向相对完整的两半;随着冲击气压的增加,两种冻土的加载率均呈线性增大;两种冻土达到动态拉伸峰值应力所需的时间在92~242μs范围内;两种冻土的动态拉伸强度均存在明显的温度效应和加载率效应,动态拉伸强度随温度的降低和加载率的增加而增大;不同负温条件下两种冻土的吸收能与动态拉伸强度均存在较好的线性关系;冲击气压的增加会导致冻土试样的破坏程度加剧,高剪切应力引起的三角破碎区面积逐渐增大。
冻胀融沉是多年冻土区的主要病害,其受水分场、温度场、应力场的复杂耦合作用影响。基于水膜理论提出了冻土未冻水膜压力作为冰透镜体生成的判据,并重新对水分迁移驱动作用进行描述,建立了以温度、土体孔隙比为变量的全耦合模型。通过考虑已冻区冰基质的影响,推导了涵盖原位冻胀与冰分凝两部分的冻胀量计算公式。基于Matlab和COMSOL Multiphysics的联立平台,提出了模型冰透镜体实时分布的数值求解方法,实现了冻土温度、水分、应力、冰透镜体分布的全耦合数值求解。通过与室内土柱冻结试验及现有水热力模型(Thermal-Hydraulic-Mechanical,又称THM模型)冻胀量结果进行对比分析,证明了温度、含水率与冻胀计算上的可靠稳定。最后通过探讨温度梯度、上覆压力、渗透系数与压缩模量对土柱冻结的影响发现,温度梯度能显著增加土体冻胀量,上覆压力会导致更多水分向冻结锋面迁移,但对冻胀量起着抑制作用,渗透系数与压缩模量均对冻胀量产生正影响。为冻胀理论研究与数值实现提供了新思路。
对人工冻结工程灾害过程中发生的人工冻土水热侵蚀问题进行了概念上的定义,并指出该问题的实质是双移动边界位置的确定。采用自行研制的冻土侵蚀室内模拟试验装置对该问题进行研究,介绍了试验装置及测点布置情况,给出双移动位置的定量判定标准。选择影响水热侵蚀的水流速率、冻土初始温度、土体含水率3个主要因素作为试验变量,采用控制变量法进行试验分组,得到不同情况下双边界随时间的移动变化情况。试验研究发现:双边界移动速率随流速呈现两阶段变化规律,即先快速增加后平稳趋势,表明冻土的存在使侵蚀速率大大减缓;冻土初始温度对于边界移动的影响并不明显,3种情况下侵蚀边界移动情况基本一致;土体饱和与否对水热侵蚀边界移动有很大影响,土体未饱和时对应的潜蚀速率明显大于饱和时的潜蚀速率。
(四号通知:江苏南京2023年5月12—14日)会议简介:全国冻土工程与寒区环境学术会议是在中国地理学会冰川冻土分会指导下,由冻土工程国家重点实验室于2019年发起,专注于冻土与寒区环境理论和实践的全国性学术交流活动,同时,对冻土工程国家重点实验室开放基金课题成果开展交流讨,已先后在兰州(2019)、南昌(2021)成功举办两届、结合前两届会议成功经验,
中国季节冻土区发育大面积深厚残坡积膨胀土,其特有的“冻胀融沉”“膨胀收缩”特性诱发诸多工程病害问题。针对季节冻土区非饱和膨胀土的冻胀变形机制问题,以延吉膨胀土为研究对象,开展了膨胀土冻胀特性试验研究,证明了膨胀土吸水膨胀特性对其冻胀特性有显著影响,据此提出了考虑相变动力区的非饱和膨胀土冻结-胀缩牵连机制。基于冻土多场耦合分析方法、结晶动力学理论,建立了非饱和膨胀土水-热-变形耦合冻胀模型FH_ex_Model,并予以验证。该模型能够反演出非饱和膨胀土冻胀过程中的冻胀变形分量和膨胀变形分量。此外,根据上述研究,建议在膨胀土工程场地中应当重视初冻期冻结作用诱发的高膨胀变形,同时稳定冻深以下区域的场地变形不容忽视。
以预埋钢筋计测值间接获取桩体轴力与桩侧摩阻力是桩基监测中的常用手段。然而,钢筋应力计测值不仅包括施加于桩基的荷载产生的应力,还包括各种非荷载因素造成的附加应力。因而,简单地以钢筋和混凝土弹性模量比值来估算混凝土应力,其结果值得商榷,多年冻土区尤甚。根据钢筋混凝土桩的实际材料特性,按相容条件建立计算方程,考虑混凝土温度变形、冻胀变形、干湿胀缩变形、自生体积变形、徐变变形以及钢筋温度变形,得出考虑非荷载变形的多年冻土区桩基础混凝土、钢筋实际荷载应力,最终得到实际荷载引起的桩身轴力、桩侧摩阻力。结果表明:该计算方法具有其合理性及有效性,可避免传统方法因非荷载变形带来的轴力失真与无法合理解释的测试结果,对桩基承载性能分析具有实际意义。
为研究多年冻土区桥梁桩基础抗震性能及影响因素,以中国多年冻土区广泛存在的高承台桩基础为研究对象,通过拟静力试验结合有限元方法探讨了多年冻土区桥梁桩基础地震破坏特征及冻土层物理力学特性变化对其抗震性能的影响规律。结果表明,随着土体温度的降低,桩–冻土体系的水平承载力、初始刚度均呈增大趋势,桩身位移在土体冻结前后变化显著。土体初始含水率的改变对桩–冻土体系的水平承载力及桩身位移的影响较小,但以土体最优含水率为界限,界限含水率两侧桩–冻土体系的刚度变化存在较大差异。土体压实度的改变对桩–冻土体系的水平承载力及桩身位移的改变影响较小,桩–冻土体系的初始刚度随着压实度的增大而增大。因此,在冻土区桩基础桥梁抗震设防中应当充分考虑桩周冻土物理力学特性变化对其抗震性能的影响。
现有的路基冻胀防控措施局限于填料改良、水分控制和隔热保温,仅能延缓季节冻土区路基冻胀发展以及削弱冻胀变形程度,缺乏有效性和主动性。本文基于主动地温控制的理念,结合季节冻土区铁路路基特征,提出了一种由太阳能供电、压缩机做功和浅层地热能利用组合的主动供热方法,在冬季为路基主动供热以补偿过度热量损失,进而消除冻胀。基于主动供热方法,研发了实现该方法的人工供热管,并构建了相应的理论计算模型。试验结果表明,人工供热管的散热管能够在较短时间内达到较高的恒定温度,其间歇运行模式有利于集热管周围地层地热能的补给,同时对散热管管壁温度影响较小。散热管管壁与周围地层的热交换效应使得地层温度快速上升,并能够维持在较高的恒定温度,有效补偿了冬季地层的过度热量损失。在粗粒土地层中,人工供热管的有效供热半径大于1.0 m,与季节冻土区铁路路基冻结深度具有较高的匹配度,验证了人工供热管在季节冻土区铁路路基中应用的可行性。