基于饱和多孔介质和冻结饱和多孔介质中波的传播理论,研究了P1波在饱和土介质与饱和冻土介质分界面上的透反射问题。采用Helmholtz矢量分解原理,结合饱和土与饱和冻土交界面的边界条件,获得P1波从饱和土层入射至饱和冻土层分界面处的透反射振幅比的解析解。通过数值计算,分析了入射频率、入射角度、饱和土介质中的渗透率以及饱和冻土介质中胶结参数、温度和接触参数等对土层分界面处的透反射振幅比的影响规律。研究结果表明:入射P1波的传播速度远小于饱和冻土介质中P1波的传播速度,因此当P1波从饱和土介质入射至饱和冻土介质中时将产生临界角,当入射角等于临界角时振幅比将发生突变;饱和土介质中渗透率对波的透反射振幅比影响较小,但其对于反射P2波影响突出;饱和冻土介质中的温度、胶结参数的变化对于波的透反射振幅比的影响显著。
对非饱和土体在冻结温度以下土中未冻水含量进行了理论分析,给出了一种简便的预测方法及其数学模型。基于非饱和土孔隙中气液两相的化学平衡和力学平衡关系,结合土-水特征曲线,给出了以Van Genuchten土-水特征曲线模型参数表示的土体孔隙体积分布密度函数,且水分冻结与土体孔径分布密切相关。根据初始有效饱和度对应的液态水填充的最大孔径和一定冻结温度对应的起始结晶孔径之间的关系,分析了土体孔隙中冰水相变的特征及其临界有效饱和度。当初始有效饱和度超过临界结晶饱和度后,冻结现象才会发生。给出了非饱和土体在冻结温度以下土中未冻水饱和度的预测公式,并通过已有的试验结果对其有效性进行了验证。
在人类活动和全球气候变化驱动下,青藏高原气候整体呈现暖湿化变化趋势,由此引发的多年冻土活动层水热变化对寒区生态环境和寒区工程稳定性产生显著影响。目前,温度升高对多年冻土的影响机制较为明确,但降雨增加、降雨增加与气温升高共同作用下的多年冻土水热响应过程和机制尚不明确。在考虑雨水感热作用的地表能水平衡-冻土水热耦合模型的基础上,对比研究气温升高、降雨增加单一作用及其共同作用对活动层水热影响机制。结果表明:相比气温升高和降雨增加单一作用,暖湿化复合作用导致地表净辐射通量和蒸发潜热通量增长显著,地表感热降低更加明显,雨水感热影响较小,地表土壤热通量呈增加趋势;暖湿化复合作用下温度梯度液态水通量增长显著,基质势梯度液态水通量在浅层增幅也大于单独升温作用,但小于单一降雨增加作用,暖湿化导致暖季土壤含水率增幅小于单独降雨作用;暖湿化作用下活动层热传导通量在冷季增加显著且增幅小于单独升温作用,而液态水对流传热在暖季增加明显且增幅小于单独湿化作用;降雨增加促使土体暖季降温显著,暖湿化与单一气温升高均导致土体在冷季升温效果高于暖季;气温升高1.0℃引起多年冻土上限下移10cm,降雨增加100 mm促使上限...
冻胀融沉作用引起的地基土体变形是冻土地区工程建设的典型地质灾害,光纤传感技术为冻土变形的精细化、分布式实时监测提供了重要的技术手段。为探究分布式光纤应变传感在监测冻土变形方面的可行性,利用自主研制的光缆-冻土界面力学特性试验仪,探究了不同干密度和初始含水率的冻土试样中缆-土界面的破坏机制。试验结果表明,光纤应变监测结果准确地反映出缆-土界面呈现渐进性破坏特征,应变软化模型能够较好地描述界面的力学特性。在冻结过程中,土体内液态水相变成冰,引起了冻结锋面移动和水分迁移,使得界面的力学特性存在显著的差异性。不同深度处缆-土界面剪应力的演化过程反映了在光缆拉拔过程中与冻土的变形协调状态,表明光缆测量范围、界面耦合性与土体干密度、初始含水率密切相关。该研究为光纤传感技术在寒区冻土地基变形监测中的应用提供了参考。
针对冻土的各向异性特性,基于线性黏结接触模型,建立了能够反映冻土各向异性特性的修正线性黏结接触模型,并通过C++语言生成供颗粒流程序PFC3D调用的离散元本构子程序DLL。首先对单一接触进行了拉伸、直接剪切测试,通过对比数值与理论结果,验证了考虑各向异性影响的冻土修正线性黏结接触模型的正确性。此外,模拟了不同温度条件下的冻土三轴压缩试验,并与试验得到的应力-应变曲线进行对比,结果表明,所提出的修正线性黏结接触模型对冻土具有较好的适用性。基于标定后的模型细观参数,开展了一系列的三轴压缩离散元数值模拟,利用模拟结果探讨了虚拟弱面法向倾角对冻土的应力-应变曲线特征、强度及抗剪强度指标的影响,并分析了有效配位数、细观组构量的演化规律。研究结果可为冻土各向异性宏-细观力学特性提供数值基础。
新型框架通风锚杆是自主研发的一种冻土边坡柔性支挡结构,具有广阔的应用前景。为了探究新型框架通风锚杆的降温效果及力学效应,设计了能够加载、变角度且可同时测得温度、水分、风速及内力的多功能冻土实验箱,并搭建了新型框架通风锚杆支护多年冻土边坡的室内试验,得到了不同时期内边坡温度、水分、风速及支挡结构内力变化规律。试验结果表明:越靠近通风锚杆,土体温度和水分变化越明显,新型通风锚杆能吸收冷量并沿轴向和径向传递和扩散,具有良好的降温效果,并保持冻土边坡的冻结状态。新型通风锚杆内风速变化规律与外界风速变化较为一致,外界风速越大,新型框架通风锚杆降温效果越明显。不同时期内,新型锚杆轴力呈抛物线型变化,冻结期轴力大于融化期,且冻结期框架内力是融化期的2~3倍。研究结果可为新型框架通风锚杆的设计和工程应用提供指导。
考虑了高温、高含冰量冻土在弹性波激励下表现出的冰晶黏滞性与未冻水流动性,并融入温度对介质物理性质的2种影响机制,通过结合Burgers黏弹性本构关系、BISQ模型和热力学理论推导了冻土中快P波、慢P波和S波传播的相速度及衰减因子的解析表达式,形成了针对该类冻土温度依赖的双相黏弹性孔隙介质理论。在此基础上开展了数值算例分析,明确了3种体波相速度和衰减因子的典型响应模式,并依次讨论了土孔隙度、冰晶黏滞性和地温等因素对它们传播特性的影响方式及敏感程度。证实了温度对快P波的相波速、衰减频带及峰值均有显著影响;对慢P波传播影响较小;对S波仅影响其相速度及低频衰减峰值。通过对比理论模型预测与实验室测试数据,证明了与传统基于弹性介质假设的冻土模型相比,基于黏弹性介质理论提出的新模型可以更好地描述高温、高含量冻土中弹性波的速度和衰减响应特征。
青藏高原暖湿化诱发的多年冻土和寒区工程水热变化是第三极冻土生态与地质演化问题的关注焦点。目前降雨影响下的多年冻土地表能量收支建模未考虑雨水温度的影响,忽略了降雨能量脉冲作用。在已有的冻土水热耦合理论的基础上,通过引入考虑雨水感热的地表能量平衡理论,完善了考虑降雨能量的冻土水热耦合模型,基于青藏高原北麓河现场监测验证了模型的有效性,并分析了夏季降雨对地表能量平衡和活动层水热的影响机制。结果表明:考虑雨水感热的修正模型模拟土壤体积含水率、温度和热通量的平均偏差误差分别在±1.198%、±0.704℃和±1.66 W/m2之内,一致性指数分别大于0.877、0.929和0.937;优化后的模型提升了对地表吸放热状态的评估,能够较好地预测了雨后活动层水热的变化;夏季降雨增加地表蒸发潜热和雨水感热,降低地表净辐射、感热和土壤地表热通量使地面降温,降温效果与降雨强度正相关;同时受降雨时段影响,白天降雨事件的降温效果显著,雨水感热促进地表冷却,而夜间雨水短暂加热地表,蒸发潜热的显著作用使地表依旧持续降温。在地表温度梯度降低和雨水入渗的作用下,温度梯度水汽通量减少,液态水通量增加...
基于弹性波在冻结饱和多孔介质与单相弹性介质中的传播理论,研究了平面P波在饱和冻土介质与单相弹性介质分界面上的透反射问题。利用Helmholtz矢量分解定理,根据分界面上的边界条件,获得了平面P波从单相弹性介质入射到饱和冻土介质分界面上透反射振幅比的理论表达式。通过数值计算,分析了在不同入射频率、胶结参数、孔隙率、饱和度和接触参数下,弹性波的透反射振幅比随入射角变化的关系。研究结果表明:P波从单相弹性介质垂直入射到饱和冻土介质分界面上时只有反射P波和3种透射P波产生,当掠入射时只产生反射而没有透射现象发生。入射频率、胶结参数、孔隙率、饱和度以及接触参数等参数对反射波和透射波的振幅比影响显著。
路基冻胀问题严重影响寒区高速铁路的安全服役,而成冰相变过程是解释冻胀机制的关键。基于介观尺度的格子Boltzmann方法,将修正的孔隙水冻结温度算法与焓法固液相变格子Boltzmann模型相结合,模拟了悬浮液滴冻结和冻土孔隙水成冰两个过程,分别揭示了液态水在自由状态和孔隙束缚状态下冰水相变的细观机制。计算结果表明:土体孔隙中冰晶由中心向外生长的过程与悬浮在空气中的液滴冻结过程截然不同,并且孔隙水越接近颗粒表面,其冻结温度越低。相同粒径颗粒按照不同排列方式得到的冻结特征曲线(soil freezing characteristic curves,简称SFCC)具有明显差异;不同粒径的SFCC随着颗粒增大残余水含量逐渐变少,形态更加陡峭。通过与文献试验结果对比,验证了格子Boltzmann方法的有效性,表明该方法能够为研究多孔介质水气迁移与相变过程提供介观尺度的新手段。