Vegetation Succession Dynamics in the Deglaciated Area of the Zepu Glacier, Southeastern Tibet
["Yang, Dan","Wang, Naiang","Liu, Xiao","Zhao, Xiaoyang","Lu, Rongzhu","Ye, Hao","Liu, Xiaojun","Liu, Jinqiao"]
2025-08-04
期刊论文
(8)
Bare land exposed by glacier retreat provides new opportunities for ecosystem development. Investigating primary vegetation succession in deglaciated regions can provide significant insights for ecological restoration, particularly for future climate change scenarios. Nonetheless, research on this topic in the Qinghai-Tibet Plateau has been exceedingly limited. This study aimed to investigate vegetation succession in the deglaciated area of the Zepu glacier during the Little Ice Age in southeastern Tibet. Quadrat surveys were performed on arboreal communities, and trends in vegetation change were assessed utilizing multi-year (1986-2024) remote sensing data. The findings indicate that vegetation succession in the Zepu glacier deglaciated area typically adheres to a sequence of bare land-shrub-tree, divided into four stages: (1) shrub (species include Larix griffithii Mast., Hippophae rhamnoides subsp. yunnanensis Rousi, Betula utilis D. Don, and Populus pseudoglauca C. Wang & P. Y. Fu); (2) broadleaf forest primarily dominated by Hippophae rhamnoides subsp. yunnanensis Rousi; (3) mixed coniferous-broadleaf forest with Hippophae rhamnoides subsp. yunnanensis Rousi and Populus pseudoglauca C. Wang & P. Y. Fu as the dominant species; and (4) mixed coniferous-broadleaf forest dominated by Picea likiangensis (Franch.) E. Pritz. Soil depth and NDVI both increase with succession. Species diversity is significantly higher in the third stage compared to other successional stages. In addition, soil moisture content is significantly greater in the broadleaf-dominated communities than in the conifer-dominated communities. An analysis of NDVI from 1986 to 2024 reveals an overall positive trend in vegetation recovery in the area, with 93% of the area showing significant vegetation increase. Temperature is the primary controlling factor for this recovery, showing a positive correlation with vegetation cover. The results indicate that Key ecological indicators-including species composition, diversity, NDVI, soil depth, and soil moisture content-exhibit stage-specific patterns, reflecting distinct phases of primary succession. These findings enhance our comprehension of vegetation succession in deglaciated areas and their influencing factors in deglaciated areas, providing theoretical support for vegetation restoration in climate change.
来源平台:FORESTS