Electrodynamic, Electromagnetic, and Vibratory Capture and Delivery Technologies for Lunar Regolith and Water-Ice Particles on Moon: Review

Lunar exploration In situ resource utilization Regolith Water ice Icy lunar regolith
Kawamoto, Hiroyuki 2025-07-01 期刊论文
(4)
National Aeronautics and Space Administration plans to deploy astronauts to the Moon and construct sustainable habitat modules in collaboration with private companies and national space agencies worldwide. In situ resource utilization (ISRU) is indispensable for large-scale, long-term human lunar exploration. Water ice, which is one of the most precious resources, is believed to exist in the Moon's polar regions. Future plans include using it to maintain life support for astronauts and provide raw materials (H2 and O2) for rocket engines and fuel cells. Because the capture and delivery of ice are required to utilize water on the Moon, the following potentially reliable and efficient capture and delivery technologies for water ice, which are based on electrodynamic, electromagnetic, and mechanical vibration forces, are being developed. (1) The first is a capture and delivery system based on electrodynamic standing waves. When a high alternating voltage is applied to parallel screen electrodes, the alternating electrodynamic force is exerted on ice and regolith particles in contact with the lower electrode, and some agitated particles are captured after they pass through the openings of the upper screen electrode. The captured particles are transported between an array of zigzag electrodes activated by the application of high alternating voltage. (2) The second is a delivery system that utilizes an electrodynamic traveling wave. Three- or four-phase high voltage is applied to parallel line or ring electrodes to form an electrodynamic traveling wave. Meanwhile, regolith and ice particles are conveyed by traveling waves. Horizontal, curved, inclined, and vertical deliveries are realizable using this system. (3) The third is an electromagnetic delivery system based on the coil-gun principle, which considers the fact that lunar regolith particles are magnetic. A multistage coil-gun mechanism powered by a charged inductor-capacitor-resistor (LCR) circuit is used to deliver the regolith particles over long distances. (4) The fourth is a vibration delivery system. The vibration-conveyance mechanism, which is widely applied in terrestrial industries, is used to deliver regolith and ice particles. When the particles are on a plate or in a tube vibrated diagonally by actuators, the vibrating plate or tube is repeatedly propelled and conveys the particles diagonally in the forward direction. When the lower end of an inclined or vertically supported vibrating tube is immersed in a layer of regolith or ice particles, particles are introduced into the tube, and the friction force between the particles and the inner wall of the tube is used to convey the particles upward. This paper provides an overview of the recent progress of these unique technologies for efficient and reliable ISRU on the Moon.
来源平台:JOURNAL OF AEROSPACE ENGINEERING