基于多特征融合的面向对象冰川边界提取

冰川边界提取; 面向对象; 基于像素; 机器学习; 多特征融合;
["林洲艳","王霞迎","夏元平"] 2025-04-10 期刊论文
鉴于像素级分类在光谱特征相近情况下难以准确识别冰川变化,特别是表碛覆盖区的光谱特征与周围山地、岩石相似度高,导致其提取精度较低。为此,本文以音苏盖提冰川和雅弄冰川为研究区,基于Google Earth Engine平台,结合光谱指数、微波纹理和地形特征,采用面向对象(OB)的机器学习算法进行冰川自动提取,并与基于像素(PB)分类方法进行对比。结果表明:(1)基于多特征融合的OB分类方法有助于提高冰川提取精度。其中,OB_RF分类的总体精度、Kappa系数和F1分数分别为98.1%、0.97和98.67%,优于OB_CART和OB_GTB方法。与PB_RF分类相比,总体精度、Kappa系数和F1分数分别提升了1.7%、0.024和5.57%。(2)2001—2022年音苏盖提冰川和雅弄冰川年平均退缩率分别为0.08%、0.13%。(3)音苏盖提冰川表碛区主要分布在海拔5000 m以下,而雅弄冰川表碛区主要分布在海拔4800 m以下,2001—2022年两条冰川表碛覆盖区均呈现向上扩张趋势。
来源平台:干旱区研究