The underutilization of natural waste from date palm plantation maintenance presents an opportunity for the production of sustainable building materials. This study investigates the mechanical properties and environmental sustainability of adobe bricks reinforced with date palm waste (DPW) and a small percentage of cement. Adobe bricks were stabilized using 7% cement by weight and varying proportions of DPW (0%, 0.5%, 1%, and 1.5% by weight), followed by curing under two distinct conditions: moist storage (MS) and open-air (AF). It was observed that bricks cured under MS conditions significantly outperformed those cured in AF, evidenced by a 47.05% reduction in capillary absorption coefficient compared to the reference brick. Despite a decrease in compressive strength due to DPW incorporation, the bricks exhibited increases in capillary and total absorption while still satisfying earth construction standards. Notably, flexural strength improved by 41.66% under MS curing. Enhanced erosion and abrasion resistance, as well as improved performance throughout wetting/drying cycles, were also recorded. These enhancements underscore the potential of DPW as a renewable additive in the formulation of adobe bricks for ecological and durable housing. The study not only proposes a novel use for date palm byproducts but also contributes to the advancement of environmentally -friendly construction methodologies.
来源平台:REVUE DES COMPOSITES ET DES MATERIAUX AVANCES-JOURNAL OF COMPOSITE AND ADVANCED MATERIALS