Soil disturbance evaluation of soft clay based on stress-normalized small-strain stiffness

Natural clay Soil sample disturbance Shear wave velocity Small -strain shear modulus Hardin equation
["Zhou, Yanguo","Tian, Yu","Ye, Junneng","Bian, Xuecheng","Chen, Yunmin"] 2024-03-01 期刊论文
(3)
Soil disturbance includes the change of stress state and the damage of soil structure. The field testing indices re flect the combined effect of both changes and it is dif ficult to identify the soil structure disturbance directly from these indices. In the present study, the small -strain shear modulus is used to characterize soil structure disturbance by normalizing the effective stress and void ratio based on Hardin equation. The procedure for evaluating soil sampling disturbance in the field and the further disturbance during the subsequent consolidation process in laboratory test is proposed, and then validated by a case study of soft clay ground. Downhole seismic testing in the field, portable piezoelectric bender elements for the drilled sample and bender elements in triaxial apparatus for the consolidated sample were used to monitor the shear wave velocity of the soil from intact to disturbed and even remolded states. It is found that soil sampling disturbance degree by conventional thin -wall sampler is about 30% according to the proposed procedure, which is slightly higher than that from the modi fied volume compression method proposed by Hong and Onitsuka (1998). And the additional soil disturbance induced by consolidation in laboratory could reach about 50% when the consolidation pressure is far beyond the structural yield stress, and it follows the plastic volumetric strain quite well. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
来源平台:JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING