A stable implicit nodal integration-based particle finite element method (N-PFEM) for modelling saturated soil dynamics

Particle finite element method Nodal integration Dynamic saturated media Second -order cone programming (SOCP)
["Wang, Liang","Zhang, Xue","Meng, Jingjing","Lei, Qinghua"] 2024-06-01 期刊论文
(6)
In this study, we present a novel nodal integration-based particle finite element method (N-PFEM) designed for the dynamic analysis of saturated soils. Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner (HR) variational principle, creating an implicit PFEM formulation. To mitigate the volumetric locking issue in low-order elements, we employ a node-based strain smoothing technique. By discretising field variables at the centre of smoothing cells, we achieve nodal integration over cells, eliminating the need for sophisticated mapping operations after re-meshing in the PFEM. We express the discretised governing equations as a min-max optimisation problem, which is further reformulated as a standard second-order cone programming (SOCP) problem. Stresses, pore water pressure, and displacements are simultaneously determined using the advanced primal-dual interior point method. Consequently, our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation. Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy, obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches. This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ by/4.0/).
来源平台:JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING