Amplitude and duration hazard-consistent ground-motion selection for seismic risk assessment in Mexico City
["Lopez-Castaneda, Alheli S","del Campo, Osvaldo Martin","Reinoso, Eduardo"]
2024-09-01
期刊论文
(11)
The emphasis of seismic design regulations on applying nonlinear dynamic analyses (NDAs) promotes using accelerograms that characterize site-specific ground motions. Commonly, amplitude levels of such accelerograms are defined by a target spectrum that could be based on a uniform hazard spectrum (UHS), which is determined by a probabilistic seismic hazard analysis (PSHA) and represents a response spectrum with ordinates having an equal probability of being exceeded within a given return period, Tr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{r}$$\end{document}. Conversely, the definition of ground-motion duration levels is not yet properly defined in current regulations to select accelerograms. Thus, adhering to data handling as that for amplitude ground-motion parameters, this study motivates executing PSHAs to define hazard-consistent levels for the ground-motion duration. That is, accelerograms can be selected to match both amplitude and duration ground-motion levels associated with Tr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{r}$$\end{document}. Further, fragility functions conditional on Tr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{r}$$\end{document} that cover typical performance objectives can be developed using sets of hazard-consistent accelerograms to implement, e.g., multiple stripe analyses (MSAs). To demonstrate the importance of choosing fully hazard-consistent accelerograms to perform NDAs, this study includes the displacement- and energy-based seismic-response evaluation of a steel frame building located at different soil-profile sites in Mexico City. Sets of fully hazard-consistent accelerograms and solely amplitude-based hazard-consistent accelerograms were artificially generated per site for values of Tr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T}_{r}$$\end{document} up to 5000 years. Results indicate that the probability of failure can be underestimated if the ground-motion duration is unvaried in MSAs, e.g., structural damage caused by 50-year return-period or higher events can be more noticeable when fully hazard-consistent accelerograms take place.
来源平台:BULLETIN OF EARTHQUAKE ENGINEERING