Testing and prediction of mechanical characteristics of sensitive marine clays stabilized by deep mixing method

Sensitive marine clays strength stiffness deep mixing method cement-ground granulated blast furnace slag
["An, Yang","Zhang, Gen"] 2024-08-14 期刊论文
Sensitive marine clays (SMCs) often pose considerable problems in the construction of embankments for transportation structures. In this study, extensive mechanical, microstructural, and monitoring experiments were carried out to evaluate the evolution of mechanical properties of SMCs stabilized via Deep Mixing Method. The results indicate that unconfined compressive strength and secant modulus increase with curing time. A significant improvement in mechanical properties is observed at early ages. Higher binder contents produce higher mechanical properties after same curing period. However, excess binder content does not provide significant improvement effects. The addition of ground granulated blast furnace slag (GGBFS) results in higher mechanical properties after long-term curing, and the enhancing degree is more evident with a higher proportion of GGBFS. But the situations are reversed at young age due to the retarding effect of GGBFS. These observations are also supported by results of physical properties, mercury instruction porosimetry, suction monitoring, and X-ray diffraction analyses. In addition, predictive models are established based on elastic-plastic theory and binder hydration model. The developed models are implemented in COMSOL Multiphysics and validated against experimental results. A good agreement is observed between experimental and predicted results which confirms the ability of developed models to predict the mechanical characteristics.
来源平台:MARINE GEORESOURCES & GEOTECHNOLOGY