Permanent strain of intact marine clay subjected to long-term true triaxial cyclic loads
["Liu, Bingheng","Kong, Lingwei","Zhu, Jianqun","Wang, Yong","Zhou, Zhenhua","Xu, Guofang","Sun, Zhiliang","Pan, Shiyang","Yu, Song","Feng, Zhiguo"]
2024-12-18
期刊论文
Traffic-induced cyclic stresses in the subsoil are three-dimensional, and it is important to acknowledge that cyclic major, intermediate, and minor principal stresses have obvious impacts on the permanent strain of the subsoil. Therefore, a series of cyclic true triaxial tests were performed on intact marine clay to investigate the evolution of permanent major principal strain (epsilon(p)(1)) under long-term true triaxial cyclic loads in this study, considering the effects of the amplitudes of cyclic deviator stress (q(ampl)), coefficient of the cyclic intermediate principal stress (b(cyc)), and the slope of the stress path (eta). The test results indicated that epsilon(p)(1) exhibits an increasing trend with increasing CSR, but decreases nonlinearly with an increase in b(cyc)and eta. This implies that the increasing amplitude of cyclic deviator stress promotes the development of epsilon(p)(1), and the accumulation of epsilon(p)(1) is limited by the growing amplitudes of the cyclic mean principal stress and cyclic intermediate principal stress. Considering the effects of CSR, b(cyc), and eta on epsilon(p)(1), a five-parameter empirical model is established to describe the accumulation of epsilon(p)(1) under true triaxial cyclic loads. In addition, the proposed model is verified by the permanent deformation data in this study and previous studies.
来源平台:MARINE GEORESOURCES & GEOTECHNOLOGY