Design, fabrication, and application of graphene sensor for geogrid strain measurement
["Hong, Chengyu","Yuan, Shu","Chen, Weibin","Zhang, Jian","Xie, Xiaofeng","Wang, Daochu"]
2025-06-20
期刊论文
(4)
In this study, a flexible vertical graphene (VG) strain sensor was developed for monitoring geogrids deformation. The VG material was fabricated using radio frequency plasma-enhanced chemical vapor deposition, followed by spin-coating a polydimethylsiloxane (PDMS) solution for film curing, resulting in a flexible sensor within a PDMS substrate. The VG sensor was integrated with a wireless Bluetooth data acquisition system for automated and remote strain measurement. The stability performance of VG sensors was examined and effectively improved through cyclic loading tests in the laboratory. The drift ratio of electrical resistance before cyclic loading tests is 37.01%, which is reduced to only 0.5% after cyclic loading tests. Calibration tests show that the maximum measurement resolution and maximum measurement range of VG sensors is 0.7 micro-strain and 40000 micro-strain, respectively, indicating that VG sensors are highly effective for both high-strain resolution identification and large-strain measurement. Pullout tests demonstrate an average error of 5.67% between VG sensors and fiber Bragg grating sensors, suggesting that VG sensors are a promising alternative for large strain, wireless, and long-term geogrid monitoring.
来源平台:GEOSYNTHETICS INTERNATIONAL