Resonance occurs when the natural frequency of an offshore wind turbine matches its rotational or blade passing frequency, potentially causing severe structural damage. Existing research on the resonance frequency characteristics of offshore wind turbines has mainly focused on elastic analysis, neglecting the nonlinear dynamic interaction between the foundation and soil. Based on the dynamic Winkler foundation model, the hyperbolic soil resistance around the pile-lateral displacement (p-y) backbone curve was used to consider the stiffness nonlinear of the pile-soil system. The shear strain-dependence of hysteretic damping was considered for soil energy dissipation. A simplified nonlinear frequency domain analysis method for calculating the resonance frequency of monopile-supported offshore wind turbines was proposed. The validity of the method was confirmed through comparisons with model test results and field measurements from the Lely (A2) offshore wind turbine. A parametric study was conducted to investigate the influence of sand density, pile length and pile diameter on the nonlinear resonance frequency of offshore wind turbines. The results show that the resonance frequency of the offshore wind turbine system decreases with increasing loading amplitude. Additionally, the influence of soil nonlinearity on the resonance frequency for systems is more obvious when the sand is looser, the pile length is shorter, or the pile diameter is smaller.