["Dattola, G","Redaelli, I","Crosta, G. B","di Prisco, C. G"]2025-05-01期刊论文
(5)
This paper presents a new design numerical tool for geosynthetic-reinforced soil embankments, used to mitigate rockfall risk in scenarios of large volumes, energies, and multiple block failures. The model can simulate both local block penetration into the uphill embankment face and extrusion mechanism frequently affecting the downhill face. The new model is based on an existing elastic-visco-plastic model, originally developed to simulate impacts of blocks on homogeneous granular strata. The model has been enhanced and modified by incorporating a plastic mechanism, accounting for the extrusion process potentially occurring within the embankment body. The model is initially described and then validated using available in situ real-scale test data; finally, the results of a parametric study, examining the influence of the main controlling parameters and the applicability of the tool for pre-design purposes, are illustrated.