Assessment on the effectiveness of chemical admixture in processed laterite and copper slag based geopolymer mortar
["Clement, David","Rajasekaran, C","Singh, Satyam Kumar","Tiwari, Mayank"]
2025-02-21
期刊论文
Geopolymer-based cementitious materials known for their robust durability and lower environmental impact make them an ideal choice for sustainable construction. The main focus of this study is to understand the influence of chemical admixtures which plays a pivotal role in improving the properties of geopolymer mortar (GM). This research integrates various chemical admixtures, including calcium chloride, sodium sulphate, sodium hexametaphosphate, and MasterGlenium SKY 8233 (SKY) which falls under the category of either accelerators, retarders, or superplasticisers. Assessments were conducted on the fresh and hardened states of flyashbased GM mixes with varying proportion of river sand (RS), laterite soil (LS) and copper slag (CS), encompassing flowability, setting times, compressive strength, durability study in aggressive environmental conditions and microstructural analyses after 56 days of ambient curing. Findings reveal that calcium chloride and sodium sulphate efficiently decrease the initial and final setting times of the geopolymer paste, highlighting their roles as accelerators, with calcium chloride showing greater efficacy than sodium sulphate. On the other hand, sodium hexametaphosphate serves as a retarder, substantially extending the initial setting time of the geopolymer paste. Introducing the modified polycarboxylic ether (PCE) based superplasticiser SKY into the mortar matrix caused the initial setting time to be extended and resulted in a slight drop in compressive strength compared to the other mixes. Durability tests confirmed the superior resistance of GM mixes to harsh environments like acid, sulphate, and marine water exposure. These findings highlight the potential for tailoring geopolymer blends to achieve desired properties under ambient curing conditions using chemical admixtures.
来源平台:CONSTRUCTION AND BUILDING MATERIALS