Wave propagation in an ocean site considering fractional viscoelastic constitution of porous seabed

Wave propagation Ocean site Fractional derivative Poroviscoelasticity Seismic response
["Zheng, Sen","Li, Weihua","Wan, Yexin","Yang, Zhe","Zhu, Sainan"] 2025-04-01 期刊论文
Wave propagation in an ocean site is an essential research topic in various scientific fields, such as offshore geotechnical engineering, ocean seismology, and underwater acoustics. Previous studies have considered the seabed soil as elastic or poroelastic, ignoring the viscoelastic characteristics of its solid skeleton. Based on the fractional-derivative viscoelastic theory and the modified Biot theory, considering the flow-independent viscosity related to solid skeleton, this paper proposes a generalized viscoelastic wave equation for a fluid-saturated porous medium. The equation has a flexible mathematical form to describe soil rheological properties more accurately through fractional order. On this basis, the total wave field equation of an ocean site, modeled as the fluid-poroviscoelastic-solid media, is established. Then an analytical solution for wave propagation in an ocean site subjected to obliquely incident P and SV waves is obtained, and its degeneration and extension are studied. The proposed method is comprehensively validated through experiment, analytical, and numerical methods. Finally, a parameter analysis is performed to investigate the effects of water depth, seabed properties (including viscoelastic parameters, fractional order and permeability), and incident angle on the seismic response of a poroviscoelastic seabed.
来源平台:COMPUTERS AND GEOTECHNICS