Multiscale mechanical behavior of hydrated expansive soil: Insights from experimental and MD study
["Niu, Weiwei","Zheng, Yuan-Yuan","Yin, Zhen-Yu","Yao, Chi","Wei, Pengchang"]
2025-05-01
期刊论文
The mechanical behavior of expansive soil in geotechnical engineering is significantly sensitive to loading rates, hydration, confining pressure, etc., where most engineering problems are attributed to the existence of montmorillonite in expansive soil. Here, the hydration, confining pressure, and loading rate effect on the mechanical behavior of montmorillonite were investigated through the triaxial tests and molecular dynamics (MD) simulation method, revealing their fundamental mechanism between the microscale and macroscale. The average basal spacing of hydrated montmorillonite system, the diffusion coefficient and density distribution of interlayer water molecules were calculated for the verification of MD model. The experimental results indicated that the stress-strain relationship of montmorillonite was the strain-hardening type. The failure stress did not increase monotonously with the increase in loading rate, and there were two obvious critical points. The failure stress of the soil sample increased with the increase of the confining pressure, and the decrease of the water content, where their fundamental mechanism between microscale and macroscale were adequately discussed. Furthermore, the stress-strain response, total energy evolution, deformation evolution of atomistic structure, and broken bonds evolution were analyzed to deeply understand the fundamental deformation mechanism at the microscale. The multi-scale studies could effectively examine the macroscopic mechanical behavior of expansive soil and elucidate its microscopic mechanisms.
来源平台:COMPUTERS AND GEOTECHNICS