Taurine decreases arsenic and microplastic toxicity in broccoli (Brassica oleracea L.) through functional and microstructural alterations

Redox homeostasis Arsenic uptake Secondary metabolism Non-enzymatic antioxidants Reactive oxygen species Oxidative damage Nutrition
["Yar, Shahar","Ashraf, Muhammad Arslan","Rasheed, Rizwan","Farooq, Umer","Hafeez, Arslan","Ali, Shafaqat","Shahid, Mudassar","Sarker, Pallab K"] 2025-04-01 期刊论文
(2)
Contamination of vegetables with heavy metals and microplastics is a major environmental and human health concern. This study investigated the role of taurine (TAE) in alleviating arsenic (As) and polyvinyl chloride microplastic (MP) toxicity in broccoli plants. The experiment followed a completely randomized design with four replicates per treatment. Plants were grown in soil spiked with MP (200 mg kg-1), As (42.8 mg kg-1), and their combination (As + MP) with or without taurine (TAE; 100 mg L-1) foliar supplementation. Results demonstrated that MP, As, and As + MP toxicity markedly decreased growth, chlorophyll content, photosynthesis, and nutrient uptake in broccoli plants. Exposure to individual or combined MP and As increased oxidative damage, indicated by elevated methylglyoxal (MG), superoxide radical (O2 & sdot;-), hydrogen peroxide (H2O2), hydroxyl radical (& sdot;OH), and malondialdehyde (MDA) levels alongside intensified lipoxygenase (LOX) activity and leaf relative membrane permeability (RMP). Histochemical analyses revealed higher lipid peroxidation, membrane damage as well as increased H2O2 and O2 center dot- levels in the leaves of stressed plants. Micropalstic and As toxicity deteriorated anatomical structures, with diminished leaf and root epidermal thickness, cortex thickness, and vascular bundle area. However, TAE improved the antioxidant enzyme activities, endogenous ascorbate-glutathione pools, hydrogen sulfide and nitric oxide levels that reduced H2O2, O2 & sdot;-, & sdot;OH, RMP, MDA, and activity of LOX. Taurine elevated osmolyte accumulation that protected membrane integrity, resulting in increased leaf relative water content and plant biomass. Plants supplemented with TAE demonstrated improved anatomical structures, resulting in diminished As uptake and its associated phytotoxicity. These findings highlight that TAE improved redox balance, osmoregulation, ion homeostasis, and anatomical structures, augmenting tolerance to As and MP toxicity in broccoli.
来源平台:BIOMETALS