Exploring the temperature, humidity, and deformation characteristics of gravel replacement foundations in seasonally frozen zones: a model testing study
["Li, Zhe","Ma, Ji","Liu, Xiaoyan","Liu, Lulu","Cai, Guojun","Peng, Lixin","Chen, Bingfan","Liang, Xiaolong","Xiong, Haibin"]
2025-03-01
期刊论文
(3)
The freeze-thaw cycle poses a significant threat to foundations and roadbeds in seasonally frozen regions. This article conducts model experiments to analyze changes in the temperature field, water migration patterns, and settlement deformation characteristics of sand-gravel replacement foundations during freeze-thaw cycles. The experimental findings indicate that the low-temperature zone primarily exists within the sand-gravel replacement layer at the base of the slope. As the number of freeze-thaw cycles increases, the freezing depth of the sand-gravel replacement layer continues to rise. During the cooling phase, changes in soil volume moisture content result from self-weight and water migration during freezing. With an increase in the number of freeze-thaw cycles, the moisture content of external measurement points on the embankment rises at the end of the freezing period, whereas the moisture content of internal measurement points decreases. At the end of the thawing phase, measurement point 6 experiences an increase in moisture content due to the upward migration of water in the lower soil layer, while other measurement points exhibit reduced moisture content. The foundation's settlement deformation exhibits a horizontal tilted shape, with cumulative settlement amounts and settlement deformation rates determined at various positions. These results suggest that the settlement deformation tends to stabilize one month after the completion of embankment filling construction. The maximum freezing depths at the left and right slope toe positions are 1 m and 1.2 m, respectively. Furthermore, the maximum frost heave at the slope toe position is less than the maximum thawing settlement, illustrating the irreversible soil deformation following freeze-thaw cycles.
来源平台:BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT