Geotechnical characterisation and sustainability assessment of plastic waste inclusions on a cement-treated fine-grained soil for pavement applications

Cement-soil Plastic waste Life cycle assessment Geotechnical properties CBR
["Chah, Charakho N","Sekharan, Sreedeep","Katiyar, Vimal"] 2025-03-01 期刊论文
Global economic growth leads to massive plastic waste increase, posing severe environmental challenges worldwide. Addressing it demands innovative solutions like repurposing plastics for construction. Extensive engineering and environmental assessments can accelerate their adoption. This study explores the potential incorporation of plastic waste (in flake and pellet forms) into a cement-treated fine-grained soil through a comprehensive geotechnical experimental testing program and Life Cycle Assessment (LCA) study to assess their environmental sustainability. Experimental investigations were conducted on four distinct plastic types, namely polypropylene (PP), high-density polyethylene (HDPE), polylactic acid (PLA), and polyethylene terephthalate (PET), with varying weight percent inclusions of 2 %, 4 %, and 6 %. Results revealed a decreasing trend in maximum dry densities and strength (both unconfined compressive strength (UCS) and split tensile strength (STS)) with increasing plastic content. Sorptivity of soil generally increased with plastic inclusions, yet in the case of PET, for plastic content > 4 %, a notable drop in the rate of increase was observed. California bearing ratio (CBR) test results indicated a reduction in the CBR values by up to 18.33 % for 6 % plastic inclusions. LCA study findings favoured plastic flakes over pellets as a more sustainable material choice, exhibiting a lower environmental impact across all assessed indicators. This research findings offer insights into the potential utilization of plastic waste and promote sustainable geomaterial choices in road pavement construction.
来源平台:TRANSPORTATION GEOTECHNICS