A rate-dependent peridynamic-SPH coupling model for damage and failure analysis of concrete dam structures subjected to underwater explosions

Peridynamics Underwater explosion Concrete dam Fluid-structure interaction Smoothed particle hydrodynamics Tensile crack
["Huang, Xieping","Zhu, Bin","Chen, Yunmin"] 2025-06-01 期刊论文
This study introduces a coupled peridynamics (PD) and smoothed particle hydrodynamics (SPH) model to handle the complex physical processes in concrete dam structures subjected to near-field underwater explosions. A robust coupling algorithm is applied to ensure accurate data exchange between PD and SPH domains, enabling the simulation of fluid-structure interactions. To account for the material behavior under high strain rates, a rate- dependent concrete model is integrated into the PD-SPH framework. The developed PD-SPH model is validated through simulations of centrifugal model tests, with results benchmarked against experimental findings and finite element method (FEM) predictions. The simulation captures key damage features, including horizontal tensile cracking at the dam head and an oblique penetrating crack in the dam body, forming an angle of approximately 17 degrees relative to the horizontal. Velocity and strain responses at critical monitoring points demonstrate strong agreement with FEM results, showcasing the model's capability in accurately predicting the structural responses and failure of concrete dams caused by underwater explosions. To the best of the authors' knowledge, research applying a coupled PD-SPH model to concrete structures under blast loading is still rare, particularly when considering the entire physical process, from explosive detonation to structural failure, accounting for fluid-structure interactions.
来源平台:INTERNATIONAL JOURNAL OF IMPACT ENGINEERING