Evolution of Dynamic Characteristics of Solidified Dredge Sludge during Long-Term Traffic Loading under Environmental Actions

Solidified sludge DW cycle FT cycle Resilient modulus Damping ratio Plastic strain Energy evolution
["Wang, Xie-qun","Kai, Wei","Yu, Xiang-wei","Han, Zhong","Zhu, Sheng","Zou, Wei-lie"] 2025-03-01 期刊论文
This study investigates the evolution of the dynamic characteristics of a solidified dredge sludge, including the resilient modulus (MR), accumulative plastic strain (epsilon p) and damping ratio (lambda) during long-term traffic loadings considering influences of environmental actions (dry-wet, DW, and freeze-thaw, FT cycles), stress states (confining stress sigma cand deviator stress sigma d) and loading frequency (f). The experimental results indicate that the dynamic characteristics continuously change with increasing loading cycles and the influences of environmental actions, external stress state, and loading frequency are coupled. The resistance of the solidified sludge against traffic loading decreases after both DW and FT cycles, which is manifested by the decrease in the MR and the increase in the lambda and epsilon p. DW cycles induce greater reductions in the dynamic characteristics than the FT cycles. The increasing sigma c improves the resistance of the soil against cyclic loadings, resulting in higher MR and lower epsilon p and lambda. Besides, their rates of change with loading cycles (i.e., delta MR, delta epsilon p and delta lambda) reduce. The MR, epsilon p, lambda, and delta ap increase while the delta MR and delta lambda decrease with the sigma d, indicating that the increase in the cyclic loading level contributes to the accumulation of plastic strain and energy assumption while the resultant densification effect leads to the increase in the MR and decrease in the delta MR and delta lambda. The soil dissipates less energy when loaded under higher f, resulting in higher MR and lower epsilon p and lambda. Results reported in this paper are helpful for better understanding the dynamic responses of solidified sludge under complex loading and environmental conditions.
来源平台:TRANSPORTATION GEOTECHNICS