Measurement of loess damage under the combination of freeze-thaw cycles and earthquakes using electrical resistivity tests

Freeze-thaw cycles Earthquake Loess damage Spatiotemporal evaluation Electrical resistivity measurement
["Yuan, Ganglie","Che, Ailan","Mu, Yanhu"] 2025-05-15 期刊论文
Electrical resistivity tests can potentially be applied in loess damage testing under combined freeze-thaw cycle (FTC) and earthquake conditions, which is crucial for preventing and controlling loess landslides. However, two challenges involving loess electrical resistivity measurements and damage characterization should be addressed. To achieve loess spatial resistivity measurements in extreme environments with low-uncertainty, a novel, multichannel, four-point method utilizing flexible electrodes is proposed. For loess damage characterization, a novel fusion algorithm is developed that integrates the electrical conductivity model with a data-driven process to eliminate the influence of moisture content and temperature on resistivity. To validate this approach, loess resistivity tests and damage characterizations were conducted using a combination of FTCs and earthquakes. The results indicate that the proposed method addresses the challenge of continuous measurement, ensuring that the discrepancy between the calculated and CT test results remains within an acceptable range, where the relative error ranged from 0 to 0.15. In addition, in the top and bottom areas, where considerable soil moisture exists, the calculation error associated with the previous empirical model was reduced considerably, with the relative error primarily ranging from 0.04 to 0.44.
来源平台:MEASUREMENT