Testing and modeling of chemically induced changes in mechanical characteristics of cement-stabilized sensitive marine clays
["An, Yang","Li, Yubin","Yang, Can","Yangjin, Zhuoma","Yuan, Lin"]
2025-01-22
期刊论文
There is a significant variability of salinity level in sensitive marine clays (SMC), which will produce an important impact on the development of mechanical characteristics in stabilized SMC. The influences of salt content (NaCl salt: 3, 10, and 20 g/L) on mechanical properties evolution of cement-stabilized SMC under different curing time (1, 7, 28, 60, and 90 days) have been experimentally investigated and modeled. The results indicate that the strength and modulus increase constantly with time but the time rates decrease. Meanwhile, the apparent improvement of strength and modulus at early age (up to 7 days) is observed. Higher NaCl content can bring a larger strength gain to stabilized SMC after same curing time and the enhancing effect of high salt contents (10 and 20 g/L) becomes more obvious with the extension of curing time. Whereas, the enhancing effect of high NaCl content on modulus is limited compared with strength. Further improvement provided by excessive NaCl salt (20 g/L) is not as effective. In addition, the predictive models have been established to quantitatively evaluate the evolution of mechanical properties in stabilized SMC with different NaCl contents. The capability of developed models has been demonstrated through the good agreement between simulated and experimental results.
来源平台:MARINE GEORESOURCES & GEOTECHNOLOGY