Featured Application The shockwave soil-loosening device developed in this paper can effectively improve the aeration of the soil in crops' root zones. It can also significantly reduce the amount of carbon released during the tillage and soil-loosening process, which helps reduce agricultural carbon. We can expand this equipment into a shockwave hole fertilization device to conduct efficient hole-digging and fertilization operations on woody crops.Abstract When the soil at the plant roots is poorly ventilated due to few pores, the root system will grow short and shallow, leading to poor growth. In this paper, we developed a shockwave soil-loosening device. It can first drill a hollow drill bit containing multi-directional holes into the soil near the roots of the crops and then generate high-pressure gas to impact the soil outside the drill bit to increase the soil pores. Therefore, this can quickly improve soil aeration. We conducted numerical simulations of shockwave loosening to explore how 3.4 atm shockwaves are emitted from the drill bit's porous nozzles and analyze the behavior and efficiency of shockwave loosening. We also performed visual observation experiments of shockwave multi-directional impact in a transparent acrylic water tank. Furthermore, we used eight pressure sensors to automatically measure the range of shockwave impact and found that when the storage tank volume was 5000 cm3, we could achieve a soil loosening range of 30 cm. Finally, this shockwave-loosening mechanism ensures that the soil surface will not be damaged during the loosening process, thus avoiding large-scale tillage disturbance of the soil. This will reduce carbon emissions stored in soil and released into the atmosphere.