Finite difference method-discrete element method simulation of flexible boundary conditions and their influence on the drained and undrained triaxial shear behavior of sands
["Jin, Lei","Li, Jing-jing","Li, Xin-ming","Sun, Han-qine"]
2025-03-01
期刊论文
(3)
Discrete element simulation of triaxial tests is an important tool for exploring the deformation and failure mechanisms of geotechnical materials such as sands. A crucial aspect of this simulation is the accurate representation of lateral boundaries. Using coupled finite difference method (FDM)-discrete element method (DEM) approach, numerical simulations of consolidated-drained and consolidated-undrained triaxial tests were conducted under flexible lateral boundary conditions. These results were then compared with those of corresponding triaxial tests using rigid lateral boundaries. The results indicate that, compared to the rigid lateral boundary, the triaxial test using the FDM-DEM coupled flexible lateral boundary better captures both the macroscopic mechanical response and the microscopic particle kinematics of laboratory triaxial specimens. In the consolidated-drained triaxial tests, the strain softening and shear dilatancy of the specimen with the flexible lateral boundary are significantly weaker after reaching peak strength than those of the specimen with the rigid lateral boundary. In the consolidated-undrained triaxial tests, when the axial strain is large, the specimen with the flexible lateral boundary exhibits both a lower deviator stress and a smaller absolute value of negative excess pore pressure. Furthermore, in the consolidated-undrained triaxial tests, as the axial strain increases, the flexible lateral boundary provides weaker lateral constraint and support to the specimen compared to the rigid lateral boundary. Consequently, the stability of the force chains in the specimen with the flexible lateral boundary is lower, leading to more buckling events of force chains within the shear band. As a result, both the anisotropy and the deviator stress are reduced.
来源平台:ROCK AND SOIL MECHANICS