Characterizing the clustered landslides triggered by extreme rainfall during the 2024 typhoon Gaemi in Zixing City, Hunan Province, China
["Ma, Hao","Wang, Fawu","Fu, Zijin","Feng, Youqian","You, Qi","Li, Sen"]
2025-07-01
期刊论文
(7)
From July 26 to July 28, 2024, a rare heavy rainfall associated with Typhoon Gaemi triggered widespread clustered landslides in Zixing City, Hunan Province, China. The severe disaster caused 50 fatalities and 15 missing persons across 26 villages, damaging 11,869 houses and affecting a total of 128,000 individuals. Timely and accurate event analysis is essential for deepening our understanding of landslide clustering mechanisms and guiding future disaster prevention efforts. To achieve this, remote sensing analysis using satellite and unmanned aerial vehicle (UAV) aerial images was conducted to assess the distribution pattern of landslide clusters and explore their relationship with environmental factors. Field investigations were subsequently carried out to identify the failure mechanisms of representative landslides. The results identified three main landslide clustering areas in the eastern mountainous forest region of Zixing City. The landslides are predominantly shallow soil slides, with their distribution closely linked to rainfall thresholds and lithology. The clustering areas typically received cumulative precipitation exceeding 400 mm during the extreme rainfall event. Lithology significantly influences the composition and thickness of slope soils, which in turn controls sliding patterns and affects landslide distribution density and individual landslide size. Granite residual soils contributed to the highest landslide density, with many large individual landslides. Topography and vegetation also play important roles in landslide formation and movement. This study provides preliminary insights into the clustered landslide event, aiding researchers in quickly understanding its key features.
来源平台:LANDSLIDES