Characteristics and mechanism of loess liquefaction-induced flow slide in Jishishan M6.2 earthquake, China

Loess liquefaction Earthquake Dynamic triaxial test Microscopic pore structure
["Wang, Lili","Wang, Lanmin","Xie, Wanli","Xu, Shiyang","Xia, Xiaoyu","Zhou, Tingru"] 2025-08-01 期刊论文
It is generally believed that loess is not prone to liquefaction. However, on December 18, 2023, a magnitude 6.2 earthquake occurred in Gansu Province, China (35.70 degrees N, 102.79 degrees E), triggering a large-scale loess liquefactioninduced flow slide spanning 2.5 km, approximately 10 km from the epicenter. To understand the disastercausing mechanism, this study obtained the physical and mechanical properties of loess in the source area through field surveys and laboratory tests, and characterized the liquefaction behavior of saturated loess layers. The findings indicate that the strong ground motion, saturated loess, and gentle slope collectively contribute to the prevailing dynamic, geological, and topographic conditions. The saturated loess layer primarily comprises silt particles with particle sizes less than 0.075 mm accounting for approximately 92.2 % of its composition. The saturated loess layer at a depth of 11m was liquefied under the action of seismic waves with a peak ground acceleration of 0.40 g, however, due to the unique pore structure of loess, it is observed that pore pressure development rate lags behind strain rise rate during liquefaction process. The majority of strain accumulation occurred during a distinct post-peak stabilization phase following peak seismic activity while pore pressure continues to escalate even after vibration ceases. The results provide scientific insights into understanding the cause contributing to loess liquefaction induced-flow slide disasters due to earthquake.
来源平台:SOIL DYNAMICS AND EARTHQUAKE ENGINEERING