The direct simple shear (DSS) test is one of the most popular testing techniques for measuring the shear strength of soils and mine waste tailings. However, uncertainties remain regarding the suitable sample diameter and whether a DSS sample should be saturated or can be tested without flushing with water. Various designs and configurations of shearing caps are also incorporated in different DSS equipment with little information on their performance and comparison soil shearing behavior with different caps. This study examines the monotonic shearing behavior, static liquefaction and instability, and post-liquefaction strength of a coarse oil tailings sand in extensive series of monotonic DSS tests on two different specimen diameters of 50 mm and 70 mm. Moist-tamped samples are reconstituted with and without flushing with water and sheared using top and bottom caps with concentric wedges and projecting pins. These are examined across a wide range of consolidation vertical stress, and for three different stress paths corresponding to undrained (CV), drained (CVS), and constant-shear unloading (CSU) shearing paths. Static liquefaction and instability were triggered in the CV and the CSU tests at the emergences of undrained strength reduction and volumetric collapse, respectively. The results show little effects of sample flushing and diameter on the static liquefaction triggering and post-liquefaction shear strengths of the tailings sand. The effect of sample diameter was primarily observed on the one-dimensional compressibility and volumetric strain of samples. The smaller diameter specimens underwent smaller volume changes during one-dimensional compression and drained shearing compared with the larger D = 70 specimens.