MICP Enhancement of Expansive Soil: Consolidation Creep Behavior and Fractional Modeling
["Tian, Xuwen","Ouyang, Qianwen","Su, Hunayu"]
2025-04-01
期刊论文
(4)
Microbial induced carbonate precipitation (MICP) is a promising method for improving the performance of geotechnical engineering materials. However, there has been limited research on the creep characteristics of expansive soil treated with MICP. Therefore, this study investigated the improvement of consolidation creep characteristics of expansive soils using the MICP method through one-dimensional consolidation creep tests. The microstructure of the treated soil was examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The results indicate that the MICP method effectively enhances the resistance of expansive soil to creep deformation. Compared to untreated expansive soil, the creep deformation of the treated soil decreased by 3.85%, 22.62%, and 18.40% for cementation solution contents of 50 mL, 100 mL, and 150 mL, respectively. Additionally, the creep curve of the improved expansive soil exhibits significant nonlinear characteristics. The creep process of the improved expansive soil can be divided into three stages: instantaneous deformation, decay creep, and stable creep. SEM images and XRD patterns reveal that the calcium carbonate precipitates generated during the MICP process can wrap, cement, and fill the voids between soil particles, which is the fundamental reason why the MICP method improves the deformation resistance of expansive soil. On the basis of the creep test results, a fractional-order creep model for MICP-treated expansive soil was established. Compared to traditional integer-order creep model, the fractional creep model can more accurately describe the entire process of consolidation creep of expansive soil improved by MICP method. The findings of this study provide a theoretical basis for analyzing the deformation of MICP-treated expansive soil under long-term loads.
来源平台:GEOTECHNICAL AND GEOLOGICAL ENGINEERING