Offshore pile penetration response in soft clays: a semi-analytical solution using the combined expansion-shearing method (CESM)
["Li, Liang","Zhou, Pan","Yang, Shanghui","Liu, Yi","He, Ben","Wei, Mingdong"]
2025-04-09
期刊论文
Accurately predicting pile penetration in marine soft clays is crucial for effective construction, load-bearing design, and maintenance of offshore pile foundations. A semi-analytical solution employing the combined expansion-shearing method (CESM) is introduced to model pile penetration in soft clays. This method innovatively simplifies the Pile penetration into undrained cavity expansion and vertical shearing. Using the S-CLAY1S model, which incorporates the anisotropy and structure of natural soft clays, an exact semi-analytical solution was developed to describe soil behavior around the pile under undrained vertical shearing, expanding upon existing undrained cavity expansion solutions. The accuracy and innovation of the CESM were validated through the results of field tests and finite element simulations. Additionally, a comprehensive parametric study highlighted the significant impact of soil's initial structure and stress state on pile penetration response. The study findings strongly align with theoretical calculations, field Measurements, and numerical simulations. Compared to the conventional cavity expansion method, CESM excels in resolving soil stresses at the pile shaft, albeit with a slight limitation in evaluating excess pore water pressure of soils at the pile shaft. The proposed solution considers the fundamental properties of soft clays, including their anisotropy and structural behavior, while incorporating the vertical shearing experienced by the soil during pile installation, thereby providing a simplified yet precise theoretical framework for addressing pile penetration challenges.
来源平台:ACTA GEOTECHNICA