Comprehensive study of the mechanical characteristics and fracture propagation mechanisms of gravel-bearing sandstone reservoirs based on the finite element method
["Feng, Kai","Wang, Zhenlin","Li, Guanfang","Zhang, Peilin","Wang, Zhichao","Wang, Yujia","Tang, Ying","Jiang, Bin","Liu, Kouqi"]
2025-08-01
期刊论文
Gravel-bearing sandstone reservoirs represent a significant type of reservoir in oil and gas exploration. Due to the difference of the spatial random distribution the content and the shape of the gravel particles, these reservoirs exhibit complex mechanical properties and failure modes. In this study, a numerical model of gravel-bearing sandstone was developed by using the Finite Element Method (FEM) and were verified by the actual indoor experimental data. The effect of the gravel particle sizes, gravel content, and gravel types on the compressive peak strength and microcrack evolution processes are further analyzed. The results reveal that cracks initiate within the sandstone matrix surrounding the gravel and propagate through the gravel with continued loading. The primary factors governing the stability of gravel-bearing sandstone are the gravel radius and content. The variation in gravel penetration rate is synchronized with the changes in peak strength. By embedding gravel particles of different shapes into the model, it is observed that the peak compressive strength of round gravel is comparable to that of elliptical gravel, with both exhibiting higher peak strengths than angular gravel. Regression models demonstrate that the tensile strength difference between the gravel and the sandstone matrix is a critical parameter influencing gravel penetration. Confining pressure has a relatively minor effect on the elastic modulus, while its impact on peak compressive strength is significantly more pronounced.
来源平台:GEOENERGY SCIENCE AND ENGINEERING