Freezing desert soil changes the wind-sand movement pattern
["Han, Zhaoen","Li, Jinrong","Qu, Pengcheng","Chai, Shaoqi","Liu, Yue","Zhao, Zhenyu"]
2025-04-10
期刊论文
(1)
In the Ulan Buh Desert, which is located in a seasonally frozen region, a frozen soil layer can appear in the winter after the wind erosion of dry sand from the surface of a mobile sand dune, thus altering the wind-sand transport process. To clarify the wind-sand transport pattern after the emergence of a frozen soil layer, this study used wind tunnel experiments to study the variations in the wind erosion rate and sediment transport pattern of frozen and nonfrozen desert soil with different soil moisture contents (1-5%). The results revealed that the relationships of the wind speed, soil moisture content and wind erosion rate are in line with an exponential function, and the wind erosion rate decreases by 6-52% after the desert soil is frozen. When the soil moisture content of the nonfrozen desert and frozen desert soil is 4% and 3%, respectively, the wind erosion rate of the soil can be reduced by more than 65% compared with that of natural dry sand (soil moisture content of 0.28%), i.e., the wind erosion rate can be effectively reduced. The sediment transport rate of nonfrozen desert soil decreases with increasing height, with an average ratio of approximately 65% for saltation. The sediment transport rate of frozen desert soil first increases but then decreases with increasing height, with an average ratio of approximately 80% for saltation. When sand particles hit the source of frozen desert soil, the interaction between particles and bed surface is dominated by the process of impact and rebound, so that more particles move higher, and some sand particles move from creep to saltation. In summary, freezing has an inhibitory effect on the wind-sand activity of desert soil, and freezing makes it easier for sand to move upwards.
来源平台:SCIENTIFIC REPORTS