Study on the shear performance and damage mechanics model of the joint surface of prestressed GFRP bolts
["Guan, Yanlin","Yang, Yaqiang","Fahmy, Mohamed F. M","Du, Wenping","Cui, Jing","Wu, Bitao"]
2025-05-23
期刊论文
The prestressed glass fiber-reinforced polymer (GFRP) rock bolt, characterized by its lightweight, high-strength, fatigue-resistant, and corrosion-resistant, effectively addresses the durability challenges associated with rock bolts in soil applications. This study was based on the shear test of GFRP anchor rods under varying levels of prestressing. The present study designed and conducted shear tests on GFRP anchor bolt joint surfaces under varying prestress levels, utilizing the double shear test method. Based on the experimental results, this research analyzed the influence of prestress on failure modes, shear bearing capacity, and shear deformation of GFRP anchor bolt joint surfaces. Furthermore, by employing an equivalent strain assumption in conjunction with damage mechanics theory, a predictive model for shear displacement-shear stiffness and shear displacementshear stress was established for GFRP anchor bolts. The results indicated that the failure mode of the prestressed GFRP anchor rod joint surface shear specimen was the shear failure following the splitting of the GFRP anchor rod. The shear carrying capacity of the joint surface with 20 % and 40 % pre-stressed GFRP anchor rods increased by 8.2 % and 20.3 % compared to the non-prestressed anchor rod, respectively. However, the ultimate displacements decreased by 22.7 % and 49.7 %, respectively. The initial stiffness of the 20 % and 40 % prestressed GFRP anchor rods was higher than that of non-prestressed GFRP anchor rods. However, under shear loading, the fracture strain of prestressed GFRP anchor rods decreased by 33 % and 44 %, respectively, compared to non-prestressed counterparts. The shear displacement-shear stiffness and shear displacement-shear stress relationships of prestressed GFRP anchor rods under the action of shear load were found to conform to the exponential distribution and Weibull distribution, respectively. The mechanical models proposed in this paper for shear displacement-shear stiffness and shear displacement-shear stress could effectively predict the mechanical behavior of shear damage on the joint surface of prestressed GFRP anchor rods.
来源平台:CONSTRUCTION AND BUILDING MATERIALS