Interpreting the potential of biogenic TiO2 nanoparticles on enhancing soybean resilience to salinity via maintaining ion homeostasis and minimizing malondialdehyde
["Abdelhameed, Reda E","Abdalla, Hanan","Hegazy, Hegazy S","Adarosy, Marwa H"]
2025-04-15
期刊论文
(1)
The use of nanoparticles has emerged as a popular amendment and promising approach to enhance plant resilience to environmental stressors, including salinity. Salinity stress is a critical issue in global agriculture, requiring strategies such as salt-tolerant crop varieties, soil amendments, and nanotechnology-based solutions to mitigate its effects. Therefore, this paper explores the role of plant-based titanium dioxide nanoparticles (nTiO2) in mitigating the effects of salinity stress on soybean phenotypic variation, water content, non-enzymatic antioxidants, malondialdehyde (MDA) and mineral contents. Both 0 and 30 ppm nTiO2 treatments were applied to the soybean plants, along with six salt concentrations (0, 25, 50, 100, 150, and 200 mM NaCl) and the combined effect of nTiO2 and salinity. Salinity decreased water content, chlorophyll and carotenoids which results in a significant decrement in the total fresh and dry weights. Treatment of control and NaCl treated plants by nTiO2 showed improvements in the vegetative growth of soybean plants by increasing its chlorophyll, water content and carbohydrates. Additionally, nTiO2 application boosted the accumulation of non-enzymatic antioxidants, contributing to reduced oxidative damage (less MDA). Notably, it also mitigated Na+ accumulation while promoting K+ and Mg++ uptake in both leaves and roots, essential for maintaining ion homeostasis and metabolic function. These results suggest that nTiO2 has the potential to improve salinity tolerance in soybean by maintaining proper ion balance and reducing MDA level, offering a promising strategy for crop management in saline-prone areas.
来源平台:SCIENTIFIC REPORTS