With the widespread application of deep excavation projects, deformation control of diaphragm walls and management of surrounding soil displacement have become major challenges in the engineering field. To address these issues, this study proposes a prefabricated multi-limb composite concrete-filled steel tube (CFST) internal support system. The mechanical performance and deformation characteristics of the fixed ends of the system were systematically analyzed through axial compression tests and numerical simulations.First, based on the CFST stress-strain model, the constitutive model was modified to account for the effects of stiffening ribs, and a stress-strain relationship model for mold bag concrete was introduced. The simulation results demonstrate that the modified model can accurately predict the stress behavior of the fixed ends. Next, to characterize the overall mechanical response of the structure, a load-displacement relationship model was established. This model, which is closely related to the CFST strength grade, effectively captures changes in the structural performance.The results indicate that during loading, the CFST internal support system exhibits good stiffness and load-bearing capacity. With an increase in the concrete strength grade, the yield load increases by 12 %, and the ultimate strain decreases by 27.76 %, significantly enhancing the mechanical performance of the structure. This study not only deepens the understanding of the design principles for CFST internal support systems but also introduces new theoretical frameworks and calculation methods, providing strong support for engineering design with broad application prospects.