Triaxial creep tests and DEM simulation of frozen clay incorporating the Burgers model
["Yan, Yihui","Chang, Dan","Liu, Jiankun","Xu, Anhua","Feng, Lizhen","Sun, Zhaohui"]
2025-09-01
期刊论文
In cold regions, the strength and deformation characteristics of frozen soil change over time, displaying different mechanical properties than those of conventional soils. This often results in issues such as ground settlement and deformation. To analyze the rheological characteristics of frozen soil in cold regions, this study conducted triaxial creep tests under various creep deviatoric stresses and established a corresponding Discrete Element Method (DEM) model to examine the micromechanical properties during the creep process of frozen clay. Additionally, the Burgers creep constitutive model was used to theoretically validate the creep deformation test curves. The research findings indicated that frozen clay primarily exhibited attenuated creep behavior. Under low confining pressure and relatively high creep deviatoric stress, non-attenuated creep was more likely to occur. The theoretical model demonstrated good fitting performance, indicating that the Burgers model could effectively describe and predict the creep deformation characteristics of frozen clay. Through discrete element numerical simulations, it was observed that with the increase in axial displacement, particle displacement mainly occurs at both ends of the specimen. Additionally, with the increase in creep deviatoric stress, the specimen exhibits different deformation characteristics, transitioning from volumetric contraction to expansion. At the same time, the vertical contact force chains gradually increase, the trend of particle sliding becomes more pronounced, and internal damage in the specimen progresses from the ends toward the middle.
来源平台:COLD REGIONS SCIENCE AND TECHNOLOGY