An Experimental Study on the Seismic Response of Vertical and Batter Pile Foundations at Coral Sand Sites
["Huang, Zhen","Liang, Ben","Xiong, Ziming","Lu, Hao","Sun, Minqian","Guo, Xiao"]
2025-03-23
期刊论文
(4)
Liquefaction and earthquake damage to coral sand sites can cause engineering structure failure. Both testing and analyzing the seismic response characteristics of pile groups on coral sand sites are highly important for the seismic design of engineering structures. To address the lack of research on the seismic dynamic response of group pile foundations in coral sand sites, this study analyzes the characteristics of the seismic dynamic response of vertical and batter pile foundations for bridges in coral sand liquefaction foundations via the shaking table model test and investigates the variation patterns of acceleration, excess pore water pressure (EPWP), and the bending moment and displacement of foundations, soil, and superstructures under different vibration intensities. Results show that the excitation wave type significantly affects liquefaction: at 0.1 g of peak acceleration, only high-frequency sine wave tests liquefied, with small EPWP ratios, while at 0.2 g, all tests liquefied. Vertical pile foundations had lower soil acceleration than batter piles due to differences in bearing mechanisms. Before liquefaction, batter piles had smaller EPWP ratios but experienced greater bending moments under the same horizontal force. Overall, batter piles showed higher dynamic stability and anti-tilt capabilities but endured larger bending moments compared to vertical piles in coral sand foundations. In conclusion, batter pile foundations demonstrate superior seismic performance in coral sand sites, offering enhanced stability and resistance to liquefaction-induced failures.
来源平台:JOURNAL OF MARINE SCIENCE AND ENGINEERING