This study presents the design and structural analysis of a bridge to protect two natural gas pipelines against static and dynamic loads resulting from a new railway line to be constructed above them. Structural analyses were conducted considering earthquake effects, particularly using the load combinations and coefficients recommended by AASHTO LRFD [2017]. The railway bridge is not designed to span any crossings. However, since the existing railroad is situated directly on the ground, a train load is transferred to the pipelines through the ground. To reduce this load transfer, a 25-30cm gap is maintained between the deck and the ground in this protective bridge design proposal. The maximum anticipated displacement of the bridge was considered in the analysis. Site-Specific Earthquake Hazard Analysis was first performed for the proposed bridge due to the critical implications of the pipelines. In the second stage, the structure underwent nonlinear dynamic displacement loading and bridge-pile-soil interaction was analyzed using both linear and nonlinear methods. The performance targets - Uninterrupted Use for DD2a class ground motion and Controlled Damage for DD1 earthquake) - stipulated by the Turkish Bridge Design Standards [TBDS, 2020] were evaluated using strength-based linear and strain-based nonlinear analyses. The results confirmed that the proposed bridge satisfied all target safety levels. In conclusion, this study aims to guide both designers and practitioners, as it is among the first to address the newly enacted TBDS-2020 regulation in Turkiye and serves as an exemplary engineering solution for similar protective bridge designs.