A unit series-parallel electrical conductivity model of soil under environmental loads

damaged soil electrical conductivity model electrical properties electrical resistivity measurement environmental loads erosion geoenvironment geophysics unit series-parallel
["Yuan, Ganglie","Che, Ailan"] 2025-06-16 期刊论文
(6)
Research on conductive models of damaged soil that consider the effect of microcrack expansion (the degree of saturation and suction) is weak. By assuming an equivalent conductive path a unit series-parallel conductive model of damaged soil under environmental loads was proposed. This model shows the change in soil porosity and fractal dimension. To verify that, the soil was damaged by rainfall cycles (simulated natural drying and rainfall). Electrical measurements and X-ray microscopy tests were performed to obtain the damaged soil resistivity, porosity, and fractal dimension variation. The resistivity was calculated based on the conductive model, and the error was approximately 7.9% compared with that of the test. In addition, the soil damage variable related to soil porosity and fractal dimension was introduced, and it exhibited a logarithmic relationship with soil resistivity. Variations in soil damage during the rainfall cycles were observed. In the top layer, the soil porosity increased and the fractal dimension decreased owing to microcrack expansion, resulting in an increase in soil damage. In contrast, in the bottom layer, the soil porosity decreased and the fractal dimension increased, resulting in a decrease in soil damage due to particle migration from the top area and pore fill.
来源平台:ENVIRONMENTAL GEOTECHNICS