Evaluation of the Durrës station seismic record (ΜW=6.4, 26/11/2019) by means of structural damage assessment

Earthquake recordings Reinforced concrete buildings Rapid visual inspection (RVI) Damage assessment Nonlinear analysis
["Stefanidou, Sotiria","Sotiriadis, Dimitrios","Klimis, Nikolaos","Margaris, Basil","Theodoulidis, Nikolaos","Sextos, Anastasios"] 2025-06-01 期刊论文
(8)
Recent earthquakes have highlighted the importance of earthquake ground motion recordings and rapid visual inspections (RVSs) of damaged buildings to assess the earthquake impact on the building inventory, prepare recovery plans, and provide valuable findings that could contribute to the preparedness ahead of future earthquake events. The effect of strong earthquake ground motions on the building stock is controlled by a range of interconnected factors. These include the intensity of ground motion, the effects of local soil conditions, the structural design, reinforcement and material properties, as well as the quality control during construction, among others. However, it is important to acknowledge that the earthquake ground motions recorded are dependent on local variables, such as the soil type and potential operational issues. Such an example is the major M6.4 earthquake in Durr & euml;s, Albania, in November 2019, the most significant in the region in the past four decades. The strong ground motion recorded at the sole Durr & euml;s accelerometric station was interrupted due to a power outage. As a result, the recorded accelerograms (with a PGA of 0.192 g) require thorough analysis and evaluation before they can be reliably used in assessing damage of existing structures. The current paper presents a framework for evaluating the incomplete record to ensure that the strong ground motion pulse is captured in the acceleration series. The latter is achieved by analyzing and comparing the amplitude and frequency contents of the recorded motion against ground motion accelerograms from areas with similar seismotectonic features. Ground motion recordings from stations that have soil conditions resembling those of the Durr & euml;s region are used, ensuring that the analysis is relevant to the specific study area. Next, the disrupted ground motion recording is evaluated by comparing the damage of post-earthquake inspected buildings with the results of advanced numerical analysis for the case of a typical 12-storey and a 5-storey building. The effects of pounding, the presence of infills, soil-structure interaction (SSI), and multiple failure modes are taken into consideration. Results indicate that despite the incomplete data, the seismic record retains the essential strong ground motion features and can be used for further studies. The numerical simulations aligned well with observed damage from rapid visual inspections, verifying the record's integrity. The findings show that factors such as soil-structure interaction, infill panels, and pounding effects significantly influenced building performance. The study concludes that the Durr & euml;s record, though incomplete, is reliable for seismic assessment and can aid future risk studies in the region.
来源平台:BULLETIN OF EARTHQUAKE ENGINEERING