The effect of surface roughness and particle size on the shear characteristics of spherical particle materials
["Miao, Meng","Liu, Fengyin","Yin, Yu","Tang, Yuqing"]
2025-06-01
期刊论文
This study aims to systematically investigate the influence mechanism of particle size and surface roughness on the shear mechanical behavior of spherical particle materials. Rough glass beads with different particle sizes (2 mm, 3 mm, 4 mm) were prepared using sandblasting technique. Together with smooth glass beads, they were used as test raw materials for indoor triaxial consolidated-drained (CD) tests. Based on the quantitative characterization of particle surface roughness, the differences in the shear mechanical properties of spherical particle materials, including stress-strain curves, strength parameters, critical state characteristics, and stick-slip behavior, etc., were discussed from the aspects of the particle size effect (R), the surface roughness index (Ra), and the normalized roughness effect (Ra/R). The main research results show that: increasing the surface roughness of particles can improve various shear mechanical parameters to a certain extent. This includes effectively increasing the peak deviatoric stress, expanding the range of the strength envelope, and raising the deviatoric stress corresponding to the specimen in the critical failure state. It can significantly increase the peak friction angle phi by approximately 10 %-40 % and the critical state line slope (CSL slope) by about 5 %-23 %. Moreover, the increase becomes more pronounced as the particle size decreases. Meanwhile, as the normalized roughness effect (Ra/R) increases, the friction coefficient becomes larger, which greatly weakens the stick-slip behavior between particles.
来源平台:POWDER TECHNOLOGY