Optimizing Filter Element Seepage Well Layouts for Urban Flood Mitigation: A Multi-Objective Genetic Algorithm Approach

filter element seepage wells genetic algorithm combinatorial assignment TOPSIS soil sponging
["Yang, Yunfeng","Li, Shunqun","Zhou, Yan","Wang, Yuming","Wang, Zhichao"] 2025-05-01 期刊论文
(9)
The rapid acceleration of urbanization, combined with the proliferation of impervious surfaces and the inherently low permeability of soil layers, has worsened urban waterlogging. This study explores the layout of filter element seepage wells within a sponge city framework to enhance rainwater infiltration and reduce surface water accumulation, proposing an optimized method for determining well spacing and depth. The optimization uses a multi-objective genetic algorithm to target the construction cost, seepage velocity, total head, and pore water pressure. A combined weighting method assigns weights to each aim, while the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) determines the perfect spacing and depth. The results show that the optimal spacing and depth of the filter element seepage wells are 1.572 m and 2.794 m, respectively. Compared to the initial plan, the optimized scheme reduces construction costs by 21.31%, increases the rainwater infiltration efficiency by approximately 200%, raises the total hydraulic head by 17.23%, and decreases the pore water pressure by 5.73%. Sensitivity analysis shows that the optimized scheme remains stable across different weight combinations. This optimized layout significantly improves both the infiltration capacity and cost-effectiveness.
来源平台:WATER