Transforming Waste Red-Bed Mudstone into Sustainable Controlled Low-Strength Materials: Mix Design for Enhanced Engineering Performance

red-bed mudstone waste utilization controlled low-strength material engineering performance feasibility mix design
["Qi, Wei","Fu, Na","Du, Jianbiao","Wang, Xianliang","Wang, Tengfei"] 2025-04-24 期刊论文
(9)
Red-bed mudstone from civil excavation is often treated as waste due to its poor water stability and tendency to disintegrate. This study proposes a sustainable approach for its utilization in controlled low-strength material (CLSM) by blending it with cement and water. Laboratory tests evaluated the fresh properties (i.e., flowability, bleeding rate, setting time, and subsidence rate) and hardened properties (i.e., compressive strength, drying shrinkage, and wet-dry durability) of the CLSM. The analysis focused on two main parameters: cement-to-soil ratio (C/S) and water-to-solid ratio (W/S). The results show that increasing W/S significantly improves flowability, while increasing C/S also contributes positively. Flowability decreased exponentially over time, with an approximately 30% loss recorded after 3 h. Bleeding and subsidence rates rose sharply with higher W/S but were only marginally affected by C/S. To meet performance requirements, W/S should be kept below 52%. In addition, the setting times remained within 24 h for all mixtures tested. Compressive strength showed a negative correlation with W/S and a positive correlation with C/S. When C/S ranged from 8% to 16% and W/S from 44% to 56%, the compressive strengths ranged from 0.3 MPa to 1.22 MPa, meeting typical backfilling needs. Drying shrinkage was correlated positively with water loss, and it decreased with greater C/S. Notably, cement's addition significantly enhanced water stability. At a C/S of 12%, the specimens remained intact after 13 wet-dry cycles, retaining over 80% of their initial strength. Based on these findings, predictive models for strength and flowability were developed, and a mix design procedure was proposed. This resulted in two optimized proportions suitable for confined backfilling. This study provides a scientific basis for the resource-oriented reuse of red-bed mudstone in civil engineering projects.
来源平台:BUILDINGS