2D nonlinear seismic response characteristics of a megacity-scale site under Ricker wavelets

Seismic site effect 2D nonlinear site response analysis Ricker wavelet Ensemble empirical mode decomposition
["Ren, Wei","Wang, Yan-Zhen","Zhu, Jiao","Zhao, Ding-Feng","Wu, Qi","Chen, Guo-Xing"] 2025-05-21 期刊论文
(1)
The seismic effects of complex, deep, and inhomogeneous sites constitute a significant research topic. Utilizing geological borehole data from the Suzhou urban area, a refined 2D finite element model with nonuniform meshes of a stratigraphic section crossing the Suzhou region was established. Within the ABAQUS/explicit framework, the spatial inhomogeneity of soils, including the spatial variation of S-wave velocity structures, was considered in detail. The nonlinear and hysteretic stress-strain relationship of soil was characterized using a non-Masing constitutive model. Ricker wavelets with varying peak times, peak frequencies (fp), and amplitudes were selected as input bedrock motions. The analysis revealed the spatial distribution characteristics of 2D nonlinear seismic effects on the surface of deep and complex sedimentary layers. The surface peak ground acceleration (PGA) amplification coefficients initially increased and then decreased as fp increases. The surface PGA amplification was most pronounced when the fp is close to the site fundamental frequency. Additionally, when fp = 0.1 Hz, the surface PGA amplification was found to depend solely on the level of bedrock seismic shaking, with amplification factors ranging from 1.20 to 1.40. Furthermore, the ensemble empirical mode decomposition components of seismic site responses can intuitively reveal the variations in time-frequency and time-energy characteristics of Ricker wavelets as they propagate upward from bedrock to surface.
来源平台:SCIENTIFIC REPORTS